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Executive Summary  
The telecommunications industry is embracing the use of Artificial Intelligence (AI) in its sophisticated 

next generation networks, driven by a surge in connected devices and data-intensive applications.  AI is 

emerging as a critical enabler to complement traditional, manual network management processes to meet 

dynamic demands, including automated resource allocation and network optimization.  While AI can 

significantly enhance efficiency, performance, and security, its deployment also introduces new security 

risks and vulnerabilities that require careful mitigation.  The Federal Communications Commission (FCC 

or the Commission) has tasked the ninth Communications Security, Reliability, and Interoperability 

Council (CSRIC IX) to identify these risks and recommend mitigations. 

 

Approach. This report examines the technical and operational implications of integrating AI into 

telecommunications by identifying AI use cases, threats, and mitigations in five distinct areas of wireless 

networks: End User Equipment, Radio Access Networks (RAN), Backhaul, Core Network, and 

Operations Support Systems.  This analysis is not meant to be exhaustive but provides concrete examples 

and a general framework for operators and vendors to consider when developing and implementing AI 

solutions and hardening networks against potential threats. 

  

Risks & Vulnerabilities. To frame the analysis, the report adopts the U.S. Department of Homeland 

Security’s (DHS) Framework for Artificial Intelligence in Critical Infrastructure, which groups AI risks 

into three primary categories.1  First, adversaries can exploit AI to augment their attack capabilities by 

automating cyber compromises, evading detection, or launching targeted physical and digital assaults on 

critical infrastructure.  Second, AI systems themselves are susceptible to attacks, ranging from input 

perturbations, prompt injections, and denial-of-service via external users, to insider threats that poison 

data, alter algorithms, or manipulate evaluation benchmarks.  Third, failures in AI design and 

implementation, such as brittleness under unforeseen conditions, inherent inscrutability, statistical biases, 

and inconsistent system maintenance, can exacerbate these risks.  Recognizing that these vulnerabilities 

can manifest at any stage of the AI model lifecycle, from planning and data preparation to deployment, 

inferencing, and ongoing monitoring, operators should integrate robust risk mitigation strategies, 

standardized protocols, and continuous evaluation processes into their network management practices to 

mitigate these risks and enhance security, reliability, and interoperability. 

 

Mitigations & Recommendations. This report provides recommendations to enhance the security of 

communications networks, addressing both AI-specific risks and broader relevant network security 

concerns.  Best practice recommendations outlined in this Report specifically should be considered 

voluntary and implemented in a manner that is appropriate to the needs, resources, and capabilities of 

each individual organization. 

 

▪ Implementing a zero-trust security strategy with verification, least privilege access, and an 

assumption of breach, protecting all network layers with strong access controls and standardized 

mechanisms such as those defined by the 3rd Generation Partnership Project (3GPP). 

 

▪ Promoting comprehensive AI education and awareness training, especially related to the use of 

AI in telecommunications.  Training should include considerations for evaluating and adopting 

AI-based technologies in a secure and responsible manner.  Appendix A contains a good list of 

resources as a starting point, and a forthcoming report from this CSRIC will address 

“Recommended Best Practices for the FCC and Industry on the Ethical and Practical Use of 
Artificial Intelligence/Machine Learning.”  

 
1 U.S. Department of Homeland Security (DHS), Roles and Responsibilities Framework for Artificial Intelligence in 

Critical Infrastructure, https://www.dhs.gov/publication/roles-and-responsibilities-framework-artificial-

intelligence-critical-infrastructure.   

https://www.dhs.gov/publication/roles-and-responsibilities-framework-artificial-intelligence-critical-infrastructure
https://www.dhs.gov/publication/roles-and-responsibilities-framework-artificial-intelligence-critical-infrastructure
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▪ Conducting a thorough threat analysis, considering how multiple, low-risk vulnerabilities can be 

combined to create high-impact threats, which AI can facilitate, especially when interfaces are 

internet-exposed. 

 

▪ Promoting access to training and test data, and sample models for key telecommunications AI 

use cases to foster a robust ecosystem of model providers for telco scenarios.  Standardized 

interfaces, datasets and schemas will help vendors create standardized AI solutions for the 

telecommunications network, and accelerate operators’ ability to evaluate, contrast and securely 

deploy AI systems. 

 

▪ Promoting collaboration among equipment manufacturers and network operators to conduct 

rigorous monitoring of the multivendor ecosystem through bills of materials, root-of-trust 

frameworks, secure data pedigree tracking, and continuous risk assessments to enhance 

transparency, mitigate AI-related threats, and protect telecommunications infrastructure. 

 

As part of adopting the aforementioned topics, some key themes emerge including:  

 

▪ Protecting data -- both during AI development and deployment-- with safeguards for personal 

data; encryption; and/or integrity safeguards to prevent tampering as well as controls to track the 

origin and if possible, the identity and provenance of AI data such as AI training data.   

 

▪ Continuous monitoring and anomaly detection to promptly identify and respond to unusual 

events in the network behavior.   

 

▪ Implementing overload protection to prevent AI functions from consuming excessive resources 

and causing system failures. 

 

▪ Regularly assessing and updating AI systems with fresh datasets to stay ahead of potential 

performance drifts and emerging threats. 

 

▪ Thorough output testing and validation protocols to verify the reliability of AI-generated 

responses before full-scale deployment. 
 

Overall, this report underscores the dual nature of AI in telecommunications: its potential to revolutionize 

network operations and enhance efficiency, and the need for proactive, robust safeguards to address the 

multifaceted risks it introduces.  By aligning with rigorous industry standards and adopting a risk-aware 

approach throughout the AI model lifecycle, both regulators and industry stakeholders can better protect 

public safety and ensure resilient, secure telecommunications networks in the evolving digital landscape. 
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1 Introduction 
The increasing complexity of networks, driven by the exponential rise of the number of devices and data-

heavy applications, challenges traditional network management.  Manual processes and static 

automation—standing alone—may not be sufficient to keep up with the dynamic demands of modern 

networks, especially as networks transition to 5G Advanced and beyond.2  AI offers an opportunity to 

adaptively allocate resources and optimize networks for network efficiency, performance, and security.  

The communications industry is already developing standards for the use of AI.3    

 

While AI has great potential to contribute to network protection, it also can introduce new attack 

surfaces.  Adversaries and other bad actors might use AI as an attack vector, making it crucial to secure 

critical AI assets such as training data, models, and their parameters from unauthorized access and 

tampering.  As AI models depend on training data and because of the probabilistic nature of AI model 

outputs, AI developers and deployers must take a risk-based approach to design, develop, and deploy 

applications for outputs to be trustworthy and secure.   

 

AI’s rapid evolution makes it difficult to predict where it will be in 5 years; hence, we view the 

challenges in a realistic manner based on what we know today so as to alert future developers of relevant 

issues that could impact telecommunications deployments of the future.   

 
 

1.1 CSRIC Structure 

CSRIC IX was established at the direction of the Chairperson of the Federal Communications 

Commission (FCC or Commission) in accordance with the provisions of the Federal Advisory 

Committee Act.4  The purpose of CSRIC IX is to provide recommendations to the FCC regarding ways 

the FCC can strive for security, reliability, and interoperability of communications systems.  CSRIC IX’s 

recommendations will focus on a range of public safety and homeland security-related communications 

matters.  The use of AI in telecommunications networks is a new focus area for CSRIC.   

 

The FCC created informal subcommittees under CSRIC IX, known as working groups, to address 

specific tasks.  These working groups must report their activities and recommendations to the Council as 

a whole, and the Council may only report these recommendations, as modified or ratified, as a whole, to 

the Chairperson of the FCC.  

 

 

 

 

 

 

 

 

 

 
2 A recent 5G Americas white paper gives a detailed view of the use of AI in current and future wireless networks. 

See Artificial Intelligence and Cellular Networks, https://www.5gamericas.org/artificial-intelligence-and-cellular-

networks/.   
3 See, e.g., O-RAN Alliance, Principles and Methodologies for AI/ML Testing in Next Generation Networks,  

https://www.o-ran.org/research-reports/principles-and-methodologies-for-ai-ml-testing-in-next-generation-

networks.  
4 5 U.S.C. App. 2.   

https://www.5gamericas.org/artificial-intelligence-and-cellular-networks/
https://www.5gamericas.org/artificial-intelligence-and-cellular-networks/
https://www.o-ran.org/research-reports/principles-and-methodologies-for-ai-ml-testing-in-next-generation-networks
https://www.o-ran.org/research-reports/principles-and-methodologies-for-ai-ml-testing-in-next-generation-networks
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1.2 Working Group 1 Team Members 
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Table 2 - List of Working Group Members 

 

Working Group members nominated alternates from within their organizations.  Although these 
alternates are not members of the Working Group and may not vote, they provided valuable input 

towards the completion of this report that should be acknowledged.  The Alternates include: 

 

Name Company 

Anmol Agarwal Nokia 

Patrick Arsenault Intrado Life & Safety 

Michael Beirne CTIA 
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Devin Christensen Cybersecurity and Infrastructure Security Agency 

Sean Donelan VeriSign, Inc. 
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Joseph Smetana Vail Systems, Inc. 

Mourad Takla Verizon 
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Lei Yu Expression Networks LLC 
 

Table 3 - List of Working Group Alternates 
 

 

 
 

 
 

2 Objective, Scope, and Methodology 

2.1 Objective 

The FCC tasked CSRIC IX to provide recommendations on: (1) threats posed by AI systems to the 

security reliability and integrity of networks and how to overcome them; (2) best practices for the FCC 

and industry on the ethical and practical use of AI; and (3) best practices for the use of AI systems 

specifically intended for public safety networks.  In this report, CSRIC IX addresses the first line of these 

efforts.  

 

In creating this task, the FCC directed CSRIC IX to consider how AI increases the risks to the security, 

reliability, and interoperability of communications networks and how best to mitigate the risks caused by 
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the introduction of AI.  In its study, CSRIC IX was directed to consider how the FCC and industry can: 

promote sound policies and practices that support public safety, network security, and resilience; promote 

the responsible use of AI; and prevent and mitigate harms associated with the use of AI.  Among other 

issues, CSRIC was to consider current trends, developments, and related standards work in “hardening” 

AI, protecting data used for training, to identify gaps in efforts to develop AI’s cyber-readiness and 

trustworthiness. 

2.2 Scope 

Communications networks encompass a broad scope.  There are three broad segments where AI may be 

leveraged to increase performance and efficiency for a wide range of consumer, business, and public 

safety applications: first, the increasing use of AI in existing 4G, 5G and fixed-line networks; second, a 

potentially central role for AI in the development and operation of emerging and future networks (e.g., 

6G) and applications; and third, the promise of AI to cater to the unique needs of the public safety 

community and the networks they rely on, including 911/Next Generation 911 and emergency alerting 

platforms.  Across these three segments, there are significant implications to consumers from the use of 

networks deploying AI technology, including ethical and practical use of AI.  Because of the breadth of 

this AI landscape, this report will assess AI principally in the context of current network design and 

operations, the implications for businesses and consumers that rely on them, the threats, if any, posed by 

the use of AI in these contexts, and recommendations to overcome potential threats. 

2.3 Methodology 

Given the broad AI landscape even within the currently deployed networks (4G, 5G and wireline), 

CSRIC decided to focus on the most relevant AI use cases, threats, and mitigations in five distinct areas: 

End User Equipment, RAN, Backhaul, Core Network, and Operations Support Systems.  The deployment 

of 5G networks will drive the evolution of 6G; therefore, this Report’s Appendix C includes an overview 

of the potential impact on 6G network design and deployment.  While not exhaustively addressing every 

potential AI use case or threat to any type of communications network, this distillation serves to identify 

key threats and a set of recommendations for the FCC and industry to consider in the journey to use AI in 

current and future communications networks.   

 

Communications networks used by and for public safety merit focused consideration regarding AI risk 

and safe use practices.  Within the context of public safety, the manner in which information is used 

(where “use” broadly construed refers to how information is collected, stored, accessed, protected, and 

used to make accurate and timely decisions) is immediately rights-impacting and often has life or death 

implications for emergency responders and the people they serve.  If applied correctly, evolving AI 

technologies promise new ways to use information in support of public safety missions.  However, 

adversaries may leverage this technology to infiltrate and disrupt public safety operations, causing 

serious consequences including erosion of public trust in government services, decreased effectiveness of 

public safety service provisioning, and loss of life and property.  For these reasons, in a later report, 

CSRIC will focus on risk mitigation best practices for AI use within public safety networks. 

3 Introduction to AI and Machine Learning 
In his pioneering 1950 paper, mathematician and computer scientist Alan Turing introduced the modern 

formulation of AI -- computing machines emulating human intelligence in some context.5  He devised the 

“Turing Test” to measure a machine’s ability to exhibit intelligent behavior indistinguishable from that of 

a human, through a conversational task.  Over the next few decades, significant progress was made in 

various areas of AI, such as perception, knowledge representation, reasoning, search, common sense, 

 
5 A. M. Turing, Computing Machinery and Intelligence, Mind, New Series, Vol. 59, No. 236 (1950), pp. 433-460.   
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rule-based systems, and planning.6  Symbolic AI focused on using human understandable symbols and 

logic (e.g., rules, lists, graphs) to represent knowledge and reason about it.  An example of this was called 

“Expert Systems” that relied on explicit “if-then” rules that are defined by humans but lacked the 

capacity to learn the rules automatically.  Such rule-based systems are best suited for narrow, well-

structured domains with known patterns where deterministic behavior is expected, such as to set up 

policies or guardrails that cannot be violated. 

 

Most contemporary AI systems, built on machine learning (ML) techniques,7 are best understood as 

highly sophisticated statistical models that identify complex patterns in large datasets, called “training 

data.”  AI systems use those patterns to make probabilistic predictions of outputs for given 

inputs to perform a specific task.  This is made possible because of the advances in hardware, 
including Graphics Processing Units, access to vast computing infrastructure (e.g., cloud architectures), 

and the availability of massive quantities of data from the internet and other digital sources.  Typical AI 

models have huge numbers (i.e., millions to billions) of parameters that are optimized during the training 

process to provide the required accuracy and expected performance, thus rendering them far beyond 

human comprehension. 

 

 

Figure 1:  Various concepts in the AI discipline and their relationships. 

Adapted from "Beyond Algorithms: Delivering AI for Business", J. Luke, D. Porter and P. Santhanam, 
CRC Press (2022) 

 

The AI discipline encompasses a wide variety of concepts and techniques, tailored to specific tasks and 

objectives.  Figure 1 depicts these concepts and their relationships.  Due to significant advances in ML 

 
6 Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach (Pearson Series in Artificial 

Intelligence),(Pearson, 4th ed. 2020). 
7 Machine learning techniques refer to the computational methods and algorithms that enable systems to learn 

patterns from data and make predictions or decisions with minimal human intervention. 
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techniques using artificial neural networks, they have become the predominant choice to build AI 

models. 

 
Predictive AI.  Predictive AI refers to the use of ML to perform a classification or prediction task based 

on the input.  Examples of a classification task include identifying an object contained in an input image 

or assessing the sentiment of a customer based on what she said about a product or service.  This 

technique, called “Supervised Learning,” requires a human to provide the training data, such as pictures 

of animals with corresponding labels of the data, such as “dog” or “cat”.  In this scenario, the ML model 

learns what a “dog” or “cat” image would be by learning the intrinsic features in the training data images 

with their associated labels.  Depending on the specific use case, labeling large datasets can be expensive.  

This is where pre-trained models -- also known as “Foundation Models” -- can be helpful.8  They are 

large, self-supervised models trained on vast unlabeled datasets.  For example, predictive AI for customer 

support can be implemented using models trained on customer data from an organization or using a pre-

trained model, such as a language model, with some local adaptation for specific customer support needs. 

 
Generative AI.  The primary objective of generative AI is to produce outputs (e.g., text, image, audio) 

that closely resemble those created by humans in response to a user request, typically made through text.  

The recent acceleration in generative AI capabilities is largely due to the development of foundation 

models using so-called “transformer” architecture focused on attention mechanisms.9  This enables 

models to focus selectively on the most relevant parts of the input during output generation.  This 

breakthrough significantly advanced performance in natural language processing.  Foundation models 

with transformers, commonly called Large Language Models (LLMs), now underpin many of today’s 

leading generative AI systems, including GPT, Gemini, and LLaMA.  These systems can generate 

human-like responses to natural language prompts and exhibit strong generalization capabilities with 

minimal fine-tuning. 

 

Notably, the quality and effectiveness of contemporary AI models to provide responses to user requests 

are dependent on four factors: 

 

1. Quantity and quality of the training data 

. 

2. Similarity between the training data and the data the model will encounter in production. 

 

3. Uncertainties in model outputs due to intrinsic noise in the training data and a lack of knowledge 

about which model explains the observed data best. 

 

4. The model’s ability to learn from new observations. 

This intuition is broadly applicable to all probabilistic AI methods and helps provide a foundation for 

understanding model failure in many contexts, including not only language applications but all 

environments within which AI models are expected to make predictions, recommendations, or decisions. 

 

Overall, each of the AI models—rule-based,  predictive, and generative—possesses unique strengths and 

characteristics.  There is growing interest in hybrid approaches that combine symbolic reasoning with 

statistical learning.  These methods seek to leverage the structure and interpretability of symbolic AI 

 
8 Jacob Devlin, et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 

Computation and Language, v2, 1-16 (2019).   
9 Ashish Vaswani, et al., Attention is all you need, NIPS’17: Proceedings of the 31st International Conference on 

Neural Information Processing Systems, 6000 to 6010 (2017) (presenting the Transformer model architecture that is 

based entirely on attention, replacing the recurrent layers most used in encoder-decoder architectures with multi-

headed self-attention that enables faster training). 
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alongside the adaptability and scalability of ML.  New research suggests that the next generation of AI 

may increasingly draw on encoded knowledge to reason effectively while learning from smaller datasets, 

enhancing both transparency and data efficiency.10 

4 Understanding AI Risk 
There is extensive literature discussing the risks in developing and deploying AI systems that use ML 

models.  For completeness, they are summarized in Appendix A of this report.   

4.1 DHS Framework 

We adopt the approach that DHS recommended in its April 2024 report on safety and security guidelines 

for critical infrastructure owners and operators of AI systems.11  The report lists three overarching 

categories of risk: 

 
▪ Attacks Using AI: The use of AI to automate, enhance, plan, or scale physical attacks on, or cyber 

compromises of, critical communications infrastructure. 

 

▪ Attacks Targeting AI Systems: Focuses on targeted attacks on AI systems supporting critical 

communications infrastructure. 

 

▪ Failures in AI Design and Implementation: This risk category stems from deficiencies or 

inadequacies in the planning, structure, implementation, execution, or maintenance of an AI system 

leading to malfunctions and/or exploitation by adversaries.  

Of the three categories, it is important to understand that adversarial attacks using AI from outside the 

network cannot be controlled by the organization.  However, it is critical that network operators 

understand the new threat vectors clearly (similar to traditional cybersecurity) to be able to protect 

against them through appropriate defense actions implemented in the AI model lifecycle.  Understanding 

the AI model lifecycle is critical to assessing the potential threat vectors and mitigation plans. 

4.2 AI Model Lifecycle Activities 

Building an AI model to perform a specific task, such as object recognition or text classification, requires 

multiple steps.  The following discussion applies to both predictive and generative AI models, even 

though the details of the specific step can be different.  Figure 2 represents the various steps to create and 

deploy a ML model in practice.  For simplicity, Figure 2 does not include any other software engineering 

activity related to the integration of the model with the business application (e.g., access control).  

 

 
10 Christina Chaccour, et al., Less Data, More Knowledge: Building Next Generation Semantic Communication 

Networks, IEEE Communications Surveys & Tutorials, Volume 27, Issue 1, 37-76 (2025) (Encoded knowledge is 

pre-stored information inside an AI model that helps it understand concepts, make decisions, and learn efficiently 

without needing a massive amount of new data.). 
11 DHS, Mitigating Artificial Intelligence (AI) Risk: Safety and Security Guidelines for Critical Infrastructure 

Owners and Operators, Apr. 2024, https://www.dhs.gov/sites/default/files/2024-04/24_0426_dhs_ai-ci-safety-

security-guidelines-508c.pdf (DHS Report).  DHS also provides a full list of risk subcategories and mitigations.   
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Figure 2 -- AI Model Lifecycle 

Planning. This step includes (1) selecting the task(s) for the potential use of AI that meets the business 

requirements (e.g., accuracy, explainability, response time) and (2) the availability of necessary training 

data, technology infrastructure, and skills in the organization. 

 

Data preparation. Quantity and type of data required (e.g., labelled vs. unlabeled, structured vs. 

unstructured, text, images) depends on the specific type of model to be built (see the next paragraph).  

This data may need preprocessing to remove noise, handle missing values, and normalize features. 

 

Model Development. This step aims to find the best pattern in the training data that matches the output to 

the input data, using various algorithms.  Details depend on the requirements of the business task.  In 

telecommunications, most of the current AI use is predictive.  Some emerging use cases, such as 

answering customer support queries in natural language, involve generative AI.  Typical ML model 

choices are (1) predictive AI for a narrow task with dedicated data, (2) predictive AI using a pre-built 

foundation model with customization for a specific task, or (3) generative AI using a commercial or open 

source LLM, with some adaptation (e.g., retrieval augmented generation) for the specific use case (e.g., 

question-answering) and domain (e.g., telecommunications).  Predictive models for narrow tasks can use 

any of the well-known algorithms, such as decision trees, support vector machines, or artificial neural 

networks. 

 

Model Evaluation. Due to the non-deterministic nature of AI outputs, businesses are left with only 

benchmarks for evaluating the AI models.  Depending on the specific areas of concern (e.g., accuracy, 

bias, robustness), businesses need to use appropriate benchmarks that align with their priorities.12  Total 

accuracy is not possible.  

  

Model Deployment. Deployment of an AI model (preferably automated) for production use includes the 

 
12 Here, benchmarks means standardized tests designed to measure performance across key areas.  Benchmarks 

serve as structured evaluations that assess a model’s ability to predict outcomes accurately (e.g., classification 

tasks); process information efficiently (e.g., response time); handle unexpected inputs robustly (e.g., adversarial 

testing); and generalize well to new data (e.g., ability to apply learned patterns from training data to previously 

unseen data while maintaining accuracy). 
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integration with the rest of the software system to support the business. 

 

Model Use/Inferencing. In this step, users are interacting with the AI model to perform the intended task 

such as predict user location or radio channel quality. 

 

Monitoring/Evaluation. During operational use, unexpected inputs can lead to degrading model 

performance (i.e., drift) that require monitoring and retraining of the model depending on the 

performance needs of the business.  Depending on the nature and severity of the drift, a business may 

need to return to the planning step for the next level of improvements to the model, finishing the lifecycle 

loop. 

4.3 Mapping Risks to AI Model Lifecycle 

The purpose of this section is to explain how the categories of risk relate to the life cycle activities for 

creating and managing the deployment of an AI model. 

4.3.1 Attacks Using AI 

The following are non-exhaustive examples extracted from the DHS Report of how adversaries can use 

AI to augment their capabilities and operations to impact network operations.  Key enablers of these 

attacks are the levels of automation possible with ML systems and their ability to create realistic network 

artifacts.  AI also makes it faster and easier for attackers to identify critical vulnerabilities by using 

multiple, lower risk issues to accelerate vulnerabilities, especially if the interface is available over the 

internet.  

 

▪ Injection of autonomous malware into networks. 

 

▪ Automatic parsing of publicly available documentation for network vulnerability insights.  

 

▪ Unauthorized data access by clever network indirections and deceptive access profiles. 

 

▪ Evasion of cyberattack detection by network owners.  

 

▪ Collecting and analyzing data to find and monitor physical targets (e.g., cell towers) for potential 

attacks. 

 

▪ AI-enabled social engineering to manipulate users to obtain sensitive information that 

compromise security controls, such as the use of deep-fakes or AI-enhanced phishing / vishing 

attempts.13 

As noted, it is not possible to prevent malicious actors from initiating these attacks, but they can be 

systematically addressed by appropriate technology and processes in the creation and deployment of AI 

systems, either through normal network design and operations or by defensive use of AI. 

 

 

 

 

 

 
13 Phishing is a cyberattack where scammers trick people into giving personal information, like passwords or credit 

card details, by pretending to be trustworthy sources, usually through fake emails or websites.  Vishing is a type of 

phishing that happens over phone calls, where scammers use voice manipulation or false identities to deceive 

victims into revealing sensitive information. 
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4.3.2 Attacks On AI 

Attacks on AI can happen under two distinct scenarios.  First, an adversary is outside the network and has 

access to the system much like any other user.  Second, an adversary has broken into the network or there 

is an insider in the organization with malicious intent.  Figure 3 and Table 4 highlight these two 

scenarios. 

 

 
Figure 3 – Activities available inside (left) and outside (right) the network. 
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Adversary Inside the Network Adversary Outside the Network 

Once an adversary is inside the network, the level of 

harm they can cause is directly related to the level of 

access and the extent of knowledge they have about the 

AI system, related processes and artifacts.  The 

adversary can affect at least three of the lifecycle 

activities, namely, “Data preparation,” “Model 

Development,” and “Model Evaluation.”   

The only way the adversary can access to impact the 

AI system is through the “Model Use/Inferencing” 

activity.   

Examples Examples14 

Data poisoning, by injecting intentionally corrupted, 

false, misleading, or incorrect samples into the training 

or fine-tuning datasets. 

Evasion attack that makes a model output incorrect 

results by slightly perturbing the input data that is sent 

to the trained model. 

Intentionally modifying algorithms, data, or sensors to 

cause AI systems to behave in a way that is harmful to 

the infrastructure they serve. 

Prompt injection attack on a generative AI model to 

produce unexpected output by manipulating the 

structure, instructions, or information contained in the 

prompt. 

Manipulating benchmarks for evaluation. Interruption/denial of service attack by flooding the 

system with input requests. 

Theft of confidential or sensitive critical infrastructure 

data from AI systems and other supporting systems. 

Model inversion and extraction attack to steal the 

training data or parameters of a model, or reverse 

engineer the functionality of a model. 

 Jailbreaking attack to break through the guardrails that 

are established by the model owners to perform 

restricted actions. 

Prompt injections to reveal sensitive information from 

the IT systems. 

 

Table 4 - List of Adversary Inside and Outside the Network Scenarios 

 

4.3.3 Failures in AI Design and Implementation 

Any IT system is affected by the quality and thoroughness of the underlying engineering development 

process.  However, AI systems introduce additional, if not novel, responsibilities for the system owners.  

Unlike traditional software, these systems possess two new characteristics: (i) ML from large amounts of 

training data, which if not appropriately managed, may raise questions about data quality, data rights, and 

provenance among other issues, that can affect the quality of the end application; and (ii) the non-

deterministic nature of AI model outputs.15  These characteristics, if not anticipated and managed 

appropriately, could introduce engineering challenges that may manifest in unexpected ways to make the 

system vulnerable.  Examples under this new class of risk include: 

 

 
14 See IBM, AI Risk Atlas, May 29. 2025, https://www.ibm.com/docs/en/watsonx/saas?topic=ai-risk-atlas. 
15 The non-deterministic nature of AI model outputs refers to the fact that AI systems, particularly those using 

machine learning and neural networks, can produce different results when given the same input under slightly 

varying conditions.  Unlike traditional deterministic algorithms, which always yield the same output for a given 

input, AI models operate with probabilities, randomness, and learned patterns, making their behavior less 

predictable. Factors such as model architecture, training data variability, stochastic processes (like dropout in neural 

networks), and even hardware differences can contribute to this unpredictability.  As a result, AI-generated 
responses or predictions may vary between runs, reflecting the inherent complexity and adaptability of such 

systems. 

https://www.ibm.com/docs/en/watsonx/saas?topic=ai-risk-atlas
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▪ Brittleness: Unintended/unexpected behavior of AI systems when confronted with circumstances 

outside of their original problem context. 

 

▪ Inscrutability: Limited transparency and inherent uncertainties in AI systems that make 

diagnosing and correcting AI system anomalies difficult. 

 

▪ Statistical Bias: The reproduction or amplification of biases in the training data and algorithms 

leading to erroneous decision-making. 

 

▪ Inconsistent System Maintenance: Failure to regularly update and maintain AI models and 

supporting systems, potentially leading to malfunction of service disruptions. 

 

▪ Over/under reliance on AI: Inadequate human oversight or under-utilization of AI. 

 

Since these risks are the results of failures in AI design and implementation, and not due to any specific 

adversarial action, their consequences and the related risks will depend on the specific context/use case. 

4.3.4 Generic AI Threats & Mitigations 

Many threats to AI systems and associated mitigations can be considered generic and applicable across a 

broad range of use cases and industries where AI is leveraged.  An overview of these generic threats and 

mitigations related to different phases of the AI Model Lifecycle is described in Appendix B. 

5 AI in Telecommunications Networks 
Artificial intelligence is rapidly transforming telecommunications networks, particularly within 5G 

systems, where automation, optimization, and predictive analytics play crucial roles in enhancing 

efficiency and performance.  Operators are implementing AI solutions to manage complex network 

functions, including traffic prediction, dynamic resource allocation, anomaly detection, and automated 

troubleshooting, ensuring more reliable and adaptive connectivity.  Recognizing AI’s growing influence, 

standards organizations such as the 3GPP, International Telecommunication Union (ITU), and European 

Telecommunications Standards Institute (ETSI) are developing frameworks to integrate AI-driven 

intelligence into network architecture, security protocols, and service orchestration, laying the 

groundwork for more autonomous and resilient communications systems.   

 

The drivers of AI implementation in 5G include rising data demands, the need for real-time network 

adaptability, and the pursuit of cost-effective operations, while commercial deployment is fueled by 

advances in edge computing, ML models, and AI-powered network slicing, shaping the future of next-

generation connectivity.  Below, we describe the use of AI in key areas of 5G systems and the potential 

use of AI in 6G networks. 

5.1 5G Systems 

The 5G system architecture is a significant evolution of previous mobile network architectures designed 

to support a wide range of applications and use cases, such as enhanced mobile broadband and network 

slicing, to meet the needs of diverse industries with improved performance, flexibility, and efficiency.  

The 5G architecture consists of multiple domains, including User Equipment (UE), Radio Access 

Network (RAN), Backhaul, the Core Network, and the Operations Support System (OSS).  5G Systems, 

as with mobile networks generally, are typically deployed in highly secured environments isolated from 

the internet with strong security controls on internal- and external-facing interfaces.  The use of AI in 

these domains is explored further in the following sections.  
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The fields of AI and telecommunications are extremely broad and complex; the complexity increases 

manifold when understanding how these fields intersect.  An exhaustive approach to enumerate every 

threat posed by AI/ML when it is used in telecommunications network is impractical because the 

landscape of both technologies is rapidly evolving, with new use cases, architectures, and vulnerabilities 

emerging continuously.  Therefore, in this report, for each 5G network domain, we first identify a 

representative set of use cases or core technologies that characterize the use of AI/ML in that domain.  

These use cases serve as a foundation for assessing security risks specific to that 5G network domain, and 

to derive mitigation strategies and subsequent FCC recommendations specific to the network domain. 

5.1.1 User Equipment 

A modern smartphone user interface (UI) provides users with an intuitive and engaging experience.  

Overall, mobile operating system (OS) developers and handset manufacturers aim to provide an efficient, 

personalized, and immersive user experience, through a variety of technologies that are ever-evolving 

and improving.  UE raises security considerations that should be factored into both consumer-level and 

network-level risks. 

5.1.1.1 AI Use in Handset UI Integration 

AI has become an integral part of the modern smartphone UI, leveraging natural language processing and 

computer vision to perform tasks more efficiently and intelligently.  For example, AI systems have been 

integrated into handsets to enhance numerous security features such as facial recognition, fingerprint 

scanning, and anomaly detection to protect against unauthorized access.  As further examples, AI models 

can aid in smart health monitoring16 and agent-based applications afford real-time, language-based 

control to open maps and locate what users are looking for.17 

 

Recently, handset UIs have been enhanced with LLMs running on cloud-based servers as well as Small 

Language Models (SLMs) running directly on the handset.18  SLMs are designed specifically to run in a 

resource constrained environment such as a mobile phone, they are computationally efficient and cost-

effective alternatives to LLMs often trained for specific domains.  Both LLMs and SLMs are advanced 

models that enable more intuitive and natural interactions, allowing users to communicate with their 

devices in a conversational manner.  AI agents can automate tasks, such as sending messages and making 

calls or even managing calendar events.19 

5.1.1.2 Risks Associated with AI Handset Integration 

These AI integrations can introduce a variety of security risks due to AI’s low-level access to both 

hardware and the OS.20  AI agents leverage ML to execute tasks on the user's behalf.  For instance, after 

receiving a phone call, the AI can transcribe the conversation, identify required actions, such as sending 

information to the caller, and then perform tasks such as drafting and sending an email with a requested 

file.  Multiple AI agents can exist on a single device and use a variety of ML models, coordinating to 

complete tasks.  However, without the right guardrails in place, the autonomy of AI agents introduces 

risks, particularly as they can expand the permissions and access given to AI and L/SLM systems.  The 

 
16 A.V.L.N. Sujith, et al., Systematic review of smart health monitoring using deep learning and Artificial 

intelligence, Neuroscience Informatics 2, no. 3:100028 (2022).   
17 Saikat Basu, Lifehacker, You Can Now Use Gemini to Navigate with Google Maps Hands-Free, Apr. 2, 2024, 

https://lifehacker.com/tech/gemini-google-maps-integration. 
18 See, e.g., Meet Prajapati, Tech Holding, On Device LLM Processing in Android, June 24, 2024, 

https://techholding.co/blog/on-device-llm-processing-android/; see also Simone Lini, The AI race might be about 

the UI Layer, not the LLMs, Feb. 3, 2025, https://www.linkedin.com/pulse/ai-race-might-ui-layer-llms-simone-lini-

rzc5f. 
19 Hao Wen, et al., AutoDroid: LLM-powered Task Automation in Android, ACM Mobicom ’24 (Sept. 30—Oct. 4, 

2024), https://arxiv.org/pdf/2308.15272 (2024). 

 

https://arxiv.org/pdf/2308.15272
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security vulnerabilities that may arise from operating LLMs and SLMs on mobile devices closely mirror 

those found in datacenter-hosted deployments, including risks such as jailbreak attempts, prompt 

injection, and model extraction.  However, certain risks can be unique in the context of UE.  For 

example, UE risks include unauthorized access to applications and data that are locally stored, which is 

why appropriate access controls are an important aspect of a reasonable security approach, as discussed 

below. 

 
Next, we present two use cases of SLMs operating on the mobile device.  The first use case examines 

risks inherent in SLMs running on mobile devices, while the second one considers vulnerabilities arising 

from hardware-level threats. 

 

a. Task Automation Using LLMs  

The integration of LLMs with mobile devices provide the language understanding and reasoning 

capabilities for task preparation, comprehension, and execution by a unified language model leveraging 

multiple modalities such as text, voice and even video.21  SLMs have demonstrated unique abilities of 

instruction following and step-by-step reasoning.  Although these abilities do not make them general-

purpose task solvers, their programmability is enhanced when coupled with other advances occurring in 

the field, such as agentic AI and protocols such as Model Context Protocol.22  As a result, SLMs are 

increasingly able to execute user-specified tasks through dynamic interactions with smartphones, for 

example, translating natural language commands into Graphical User Interface (GUI) application 

operations, thus allowing the SLM to act as a multimodal “exploitation” bridge between an application 

on the mobile device and the user, based fundamentally on the SLM natural language processing.  Under 

such an arrangement, a user can simply issue a command (a task) -- “Record the following message and 
send it to John Csric as an email attachment”-- causing the SLM to interface with distinct applications 

(the recording application and the email application) on the mobile phone. 

 

The flexibility derived from the SLM coordinating such tasks must be weighed carefully against the 

access permissions the model will require to interact with the applications and data stored on the mobile 

device.  Furthermore, this area is evolving rapidly, with new security risks arising when new models and 

supporting code are released.  Indeed, newer L/SLM models may raise novel emulation attack threats, 

whereby an attacker mimics the behavior of legitimate users, devices, or software to bypass security 

measures, which are being factored into overall security approaches.  

 

b. Edge LLM Impacts on Device Performance 

The continuous operation of large AI models, in the absence of cloud server dependence, could result in 

increased heat output and higher power consumption of a device’s Central Processing Units (CPU).  

Consequently, this elevated heat can alter the thermal environment, particularly if cooling systems or 

other electronic components are affected.  These thermal changes might indirectly impact digital 

processing and lead to variations in radio frequency signal behavior that could increase “exploitation 

 
21 See, e.g., Hao Wen, et al., AutoDroid: LLM-powered task automation in Android, ACM MobiCom ’24: 

Proceedings of the 30th Annual International Conference on Mobile Computing and Networking, 543-557 (2024); 

see also Liangtai Sun, et al., META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI, 

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Association for 

Computational Linguistics, 6699-6712 (2022).   
22 Github, Introduction: Get started with the Model Context Protocol (MCP), 

https://modelcontextprotocol.io/introduction (last visited June 2, 2025).  The Model Context Protocol is an open 

standard designed to help AI models integrate with external tools, systems, and data sources in a structured way. 

https://modelcontextprotocol.io/introduction
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surfaces.” 

5.1.1.3 Mitigation Strategies and Recommendations 

The mitigation strategies to protect against the risks associated with LLMs are complex.  This complexity 

results in cloud-hosted LLMs using IT departments to mitigate the risks of LLMs fabricating responses 

(“hallucinate”),23 being susceptible to circumvention (“jailbreak”),24 and divulging privacy of the user’s 

past interaction with the LLM.  

 
Importantly, all stakeholders in the mobile ecosystem have a role to play to mitigate risk, including 

mobile OS, application developers and providers, app store vendors, OEMs, operators, and end users.  

For example:  

 

▪ Mobile OS and application developers should ensure that SLM-powered applications request 

only essential permissions, meaning denying a request to grant permissions to access the contact 

list on the phone if the task does not require such access. 

 

▪ Mobile OS and application developers should enforce containerization by distributing SLMs that 

operate in a sandbox.25  Users should be encouraged to prefer the download of such containerized 

distributions. 

 

▪ When choosing which SLM to download from an application store, vendors should provide 

transparent disclosures and warnings to help non-expert users make informed consent. 

 

▪ Application providers should ensure that the SLM is not unintentionally active when the device 

is not being actively used, and that the SLM cannot take certain, potentially risky actions until 

after the device has authenticated the user. 

 

It is infeasible to expect any one stakeholder to independently implement or manage the comprehensive 

security measures required for these systems.  And in considering a comprehensive approach to risk 

mitigation, it is important to factor in actions and efforts that may undermine security, including end 

users circumventing app store safeguards.  The mitigation strategies, therefore, are inherently constrained 

by the weakest link.  

 

Recommendations 

 
▪ The Commission should consider creating consumer guidance addressing the use of SLMs in 

coordination with smartphone end user devices.  This guidance could, for example, be shared 

through online documentation (e.g., blog posts), or information sessions at local libraries. 

 

▪ The Commission should collaborate with operators and handset manufacturers, as well as federal 

partners, to facilitate the development of best practices to ensure that AI-based UI includes 

appropriate security controls (e.g., access controls, data protection measures, and threat detection 

and mitigation measures). 

 

 
23 Lei Huang, et al., A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and 

Open Questions, ACM Transactions on Information Systems, Volume 43, Issue 2, 1-55 (2025).   
24 Alexander Weir, et al., Jailbroken: how does LLM safety training fail?, NIPS ’23: proceedings of the 37th 

International Conference on Neural Information Processing Systems, 80079-80110 (2023).   
25 Containerization refers to creating an isolated setup that protects user data, prevents unauthorized access, and 

minimizes resource usage so the model can function smoothly without slowing down the device or interfering with 

other apps. 
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▪ The Commission should collaborate with handset manufacturers and federal partners to reinforce 

the importance of considering that “always on” SLMs can impact the CPU, generate excess heat, 

and possibly alter spectral patterns.  

 

▪ The Commission should collaborate with industry and federal partners to develop best practices 

regarding access to LLM models, including potential limitations on access to SLMs before a 

device has authenticated the user.  

 
▪ The Commission should collaborate with federal partners to promote the benefits of 

manufacturers adopting the security measures outlined in the DHS guidelines and the NIST AI 

Risk Management Framework. 

5.1.2 Radio Access Network 

The 5G RAN is a critical component of the overall 5G architecture, responsible for connecting mobile 

devices to the core network, managing radio resources, overseeing data throughput, and optimizing 

network performance.  The rapid evolution of mobile networks from 4G to 5G has transformed the RAN 

landscape, bringing unprecedented speed, capacity, and flexibility.26  Along with these advances, there is 

a growing integration of AI in RAN operations; for example, dynamic spectrum management (DSM) and 

self-optimizing network functions.  To ensure AI in 5G is trustworthy, AI-driven network functions must 

be reliable, safe, secure, and transparent in their behavior.   

3GPP is the leading organization defining global 4G and 5G RAN standards, collaborating across 

international telecommunications bodies to develop technical specifications.27  Traditional RAN 

architectures in 4G and early 5G deployments were largely vendor-specific and vertically integrated, with 

base stations provided as closed systems, limiting interoperability and flexibility.  To address this, the 

industry moved toward more open and disaggregated RAN models, such as Centralized RAN (C-RAN) 

and virtualized RAN (vRAN).  This evolution culminated in O-RAN, which decouples radio hardware 

from baseband processing, enabling modular components, described below in Table 5, to communicate 

over standardized interfaces.  O-RAN allows operators to mix and match vendors, fostering competition 

and innovation while reducing reliance on single-vendor solutions.28  O-RAN enhances vendor diversity 

and operational efficiency, but it also introduces security and interoperability challenges due to the 

increased complexity of multi-vendor networks.  O-RAN integrates AI-driven intelligence through the 

RAN Intelligent Controller (RIC), which is designed to optimize radio resource management and 

 
26 Mobile Radio Access Network (RAN) standards have progressed through successive generations, with 4G (LTE) 

and 5G (NR) marking major leaps in capability.  4G LTE, first defined in 3GPP Release 8 (2008), marked a 

departure from 3G by adopting an all-IP architecture and leveraging advances in digital modulation, such as 

orthogonal frequency-division multiple access OFDMA, and radio link methods, such as multiple-input and 

multiple-output (MIMO), for improved speed and latency.  LTE-Advanced, introduced in Release 10 (2011), 

brought enhancements like carrier aggregation and higher-order MIMO, eventually leading to gigabit speeds with 

LTE-Advanced Pro.  The first 5G RAN standard, 5G New Radio (NR), arrived with Release 15 (2018), introducing 

a flexible air interface, wider bandwidths, including millimeter-wave frequencies, and massive MIMO to support 

emerging use cases like autonomous systems and industrial automation.  Later releases have continued refining 5G 

with ultra-reliable low-latency communication (URLLC) and massive IoT connectivity. 
27 Through iterative Releases, such as LTE in Release 8 and 5G NR in Release 15, 3GPP has guided key 

generational advancements in mobile technology.  Beyond air interface protocols, it defines entire RAN 

architectures and standardizes interfaces like S1, X2, NG, and Xn, ensuring interoperability among equipment from 

different vendors and supporting global roaming.  Recognized by ITU-R, 3GPP’s specifications form the 

foundation of IMT-Advanced (4G) and IMT-2020 (5G), fostering innovation, compatibility, and security across 

networks worldwide. 
28 The O-RAN Alliance, formed in 2018, has been instrumental in defining Open RAN specifications, including the 

7-2x fronthaul split for interoperability between RUs and DUs. 
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interference mitigation.   

 
Table 5 - 5G Radio Access Network Components 

 

In addition to these core components, 5G RAN leverages several advanced radio technologies to improve 

coverage, capacity, and spectral efficiency: 

 

▪ Beamforming: Focuses radio signals on targeted directions for optimal coverage and capacity, 

rather than broadcasting uniformly in all directions. 

 

▪ Massive MIMO (Multiple Input Multiple Output): Enhances the network’s capacity and 

throughput by using arrays of multiple antennas at the base station to transmit and receive more 

data streams simultaneously. 

 

RAN Component Function 

Centralized Unit (CU) Handles the higher-layer functions of the RAN, such as control-plane 

signaling, user-plane data processing, and session management.  It is 

typically located farther from the cell site and can serve multiple DUs.  

The CU supports extensive data processing capabilities, handling tasks 

like mobility management, radio resource control, and packet scheduling. 

Distributed Unit (DU) Manages lower-layer functions including real-time data processing, 

scheduling, and transmission tasks.  Located closer to the end user, the 

DU ensures low-latency, real-time communication.  It connects to the RU 

(which handles radio signal transmission/reception).  In a 5G base station 

(gNodeB), the DU works in tandem with the RU to provide wireless 

access.  The DU’s responsibilities include managing UE connections, 

mobility, scheduling data transmissions, and supporting various radio 

technologies (e.g., LTE and 5G NR). 

Radio Unit (RU) Responsible for the RF front-end: it manages the transmission and 

reception of radio waves.  The RU converts digital signals from the DU 

into analog radio signals and transmits them over the air interface to UEs, 

and vice versa. 

RAN Intelligent 

Controller (RIC) 

Provides an intelligent control layer to optimize the RAN in real time 

using advanced algorithms (including AI/ML).  The RIC is split into two 

components: a Near-Real-Time RIC (handles real-time adjustments to 

radio resources) and a Non-Real-Time RIC (handles longer-term, higher-

level network optimization).  The RIC hosts specialized applications -- 

xApps on the near-real-time RIC for immediate, time-sensitive control 

tasks (e.g., optimizing radio resource management, handling mobility) and 

rApps on the non-real-time RIC for strategic, non-time-critical tasks (e.g., 

traffic forecasting, network planning).  These applications enable the 

RAN to autonomously adapt to changing network conditions, improving 

capacity, coverage, and user experience while reducing operational costs. 
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▪ Dynamic Spectrum Sharing (DSS): Allows operators to allocate and share spectrum resources 

dynamically between different generations of mobile networks (e.g., 4G LTE and 5G NR) to 

improve overall spectrum efficiency. 

5.1.2.1 AI Use in 5G RAN 

AI’s role in the RAN ecosystem is not new as Self-Optimizing or Self-Organizing Networks (SON) 

technology has incorporated elements of ML for many years.  SON is a technology concerned with RAN 

configuration automation and resource utilization optimization and is typically deployed in the Network 

Management layer to manage RAN deployments.  AI is poised to expand rapidly in RAN 

implementations, driven by initiatives in industry and standards bodies, including 3GPP, O-RAN 

Alliance, and ETSI.  Government-led modernization efforts, such as the National Spectrum Strategy29 

and the National Spectrum Research and Development Plan (2024),30 have likewise encouraged 

incorporating AI in search of spectrum efficiencies and productivity. 

 

This section focuses on two priority use cases of AI in 5G RAN:  AI for Energy Savings and AI for 

DSM/DSS.  For each use case, we outline how AI is applied and then examine vulnerabilities, potential 

attacks, and mitigations, referencing established industry frameworks (e.g., Open Web Application 

Security Project (OWASP) guidelines and O-RAN Alliance AI security recommendations) where 

applicable.  Applications of AI in the context of DSM/DSS and related uses are further discussed next.  

The discussions directly address relevant issues closer to the user interface and the impact on wireless 

access and spectrum management for energy optimization applications. 

 

Energy Savings. Powering RAN infrastructure is energy-intensive, so operators are adopting AI-driven 

strategies for adaptive energy management.  One key application is cell sleep and activation: AI 

algorithms monitor network demand patterns and can temporarily shut down underutilized cells or 

equipment during off-peak hours, reactivating them as demand increases.  Another AI-driven strategy is 

beamforming optimization, which dynamically adjusts antenna beam directions and power; by steering 

signals more efficiently and lowering transmission power, when possible, the system can reduce energy 

consumption while maintaining service quality.  Additionally, AI optimizes power control, continually 

tweaking the transmit power of cells to ensure adequate coverage and capacity with minimal waste. 

 

Energy management techniques introduce new security concerns as they are potentially vulnerable to 

malicious intervention—for example, an attacker could conduct data poisoning on the AI’s inputs (e.g., 

feeding false network load or sensor data) to trick the system into erroneously deactivating critical cells 

at busy times or keeping redundant cells active, leading to service disruptions or wasted energy.  

Generally, direct AI-focused attacks on RAN energy-saving features are less likely than broader network 

attacks, since they would require targeting specific AI models; nonetheless, the possibility exists and 

must be guarded against in any AI-managed energy optimization system. 

 

DSM/DSS. Efficient use of radio spectrum is another crucial area where AI is applied in 5G RAN.  AI-

driven DSM allows the network to intelligently allocate frequencies in real time; for example, in the 

Citizens Broadband Radio Service (CBRS) band where commercial 5G systems share spectrum with 

government incumbents and with each other.  AI/ML models can analyze interference and usage patterns 

to dynamically assign spectrum channels to cells or users, optimizing utilization while avoiding conflicts.  

 
29 See NTIA, National Spectrum Strategy Implementation Plan, Mar. 12, 2024, 

https://www.ntia.gov/sites/default/files/publications/national-spectrum-strategy-implementation-plan.pdf (seeking 

recommendations for potential investment based on assessment of smart spectrum management technologies 

including artificial intelligence and machine learning).   
30 Wireless Spectrum Research and Development Interagency Working Group, Networking and Information 

Technology Research and Development Subcommittee of the National Science and Technology Council, National 

Spectrum Research and Development Plan, Oct. 2024, at 13, https://www.nitrd.gov/pubs/National-Spectrum-RD-

Plan-2024.pdf.   

https://www.ntia.gov/sites/default/files/publications/national-spectrum-strategy-implementation-plan.pdf
https://www.nitrd.gov/pubs/National-Spectrum-RD-Plan-2024.pdf
https://www.nitrd.gov/pubs/National-Spectrum-RD-Plan-2024.pdf
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This real-time spectrum allocation helps maximize network throughput and efficiency by making the 

most of available spectrum resources. 

 
Another important aspect of AI-driven DSM/DSS is incumbent protection.  The AI must ensure that 

primary users of spectrum -- military or government communications in shared bands -- are not adversely 

affected when secondary users -- commercial operators -- access the band.  This involves sensing or 

predicting when and where incumbents are active and adjusting wireless transmissions accordingly, 

maintaining fairness and preventing critical communication disruptions.  Additionally, AI facilitates 

Multiple Radio Access Technology (multi-RAT) coexistence – orchestrating multi-RAT (e.g., 5G, LTE, 

and Wi-Fi operating in overlapping frequencies) so that they can coexist with minimal interference.  By 

coordinating across technologies, AI can help the RAN optimize overall throughput while respecting 

each technology’s interference constraints. 

 

Having introduced these use cases, the next section examines specific AI-related vulnerabilities in the 5G 

RAN, focusing on how they impact the energy savings and spectrum management scenarios discussed 

above. 

5.1.2.2 Risks Associated with AI in 5G RAN 

Our analysis categorizes AI-related vulnerabilities in the 5G RAN into two broad groups.  The first 

category involves attacks that leverage AI (using AI as a tool to enhance attacks on the network).  These 

include threats such as AI-assisted phishing campaigns, realistic voice or image impersonation of 

operators/administrators, or automated exploit discovery using AI.  Such attacks are typically general 

cyber-attack vectors that could lead to credential theft or infiltration of an operator’s network 

environment; they are serious, but notably they do not specifically target the AI control loops within the 

RAN. 

 

The second category consists of attacks targeting the AI systems in the RAN.  These are more direct 

threats to the AI components themselves; for example, data poisoning, adversarial inputs, model evasion 

techniques, or “model-in-the-middle” manipulations.  These attacks are particularly critical in the RAN 

context because they focus on exploiting the AI-driven elements of the RAN (such as the O-RAN RIC 

and its xApps/rApps) that govern key functions like resource allocation and energy management.  Due to 

the large range of existing RAN related technologies that exist (many of which are proprietary) this 

report uses Open RAN (O-RAN) in places simply to highlight examples of the kinds of threats to be 

considered within the RAN.  

 

Below, we expand on several key AI vulnerabilities that are especially relevant to the 5G RAN energy 

saving and DSM use cases: 

 

Data Poisoning/Model Manipulation. In a RAN context, data poisoning occurs when an attacker injects 

malicious or misleading data (such as false telemetry readings or manipulated sensor inputs) into the AI’s 

training or operational data stream, thus corrupting either the models themselves or the output from the 

models, respectively.  This can corrupt the model’s understanding of network conditions, causing it to 

make harmful decisions.  For instance, in the energy-saving scenario, poisoned data could cause the AI 

system model to incorrectly predict low traffic and deactivate essential cells, wasting energy or degrading 

Quality of Service (QoS) for users.  In a DSM/DSS scenario, falsified spectrum occupancy data might 

mislead the AI to improperly assign spectrum in shared bands, potentially creating interference or 

violating incumbent protections by transmitting when and where it shouldn’t. 
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Adversarial Inputs. Adversarial input attacks involve crafting specialized input signals or traffic patterns 

that exploit the AI model’s vulnerabilities and force misclassification of conditions.31  In terms of energy 

management, an adversary could generate traffic patterns that confuse an AI model overseeing 

beamforming or power control, causing it to either under-provision (leading to capacity shortfalls) or 

over-provision resources (wasting energy).  In spectrum management, adversarial signals might trick an 

AI’s interference detector into overlooking unauthorized transmissions or erroneously blocking 

legitimate ones.  The result can be network disruptions or improper enforcement of spectrum sharing 

policies. 

 
Model Evasion and Reverse Engineering. These attacks occur when an adversary probes an AI system 

(via repeated queries or observations of its decisions) to learn about its internal model and decision 

boundaries.  By reverse-engineering aspects of the model, the attacker can then craft inputs that 

systematically evade detection or exploit the model’s blind spots.  In the energy saving use case, if 

attackers discern how the AI decides to activate or deactivate cells, they could time their activities to 

avoid triggering energy-saving mode, forcing the network to stay in a high-power state or to deliberately 

trigger it at the wrong times.  In a DSM/DSS context, understanding the model’s spectrum allocation 

strategy could allow an attacker to predict and occupy frequencies that the AI believes are free, thus 

gaining unauthorized spectrum access or causing interference while avoiding the AI’s detection 

mechanisms.  This leads to unauthorized spectrum usage, network interference, and potential violation of 

regulations. 

 

System Control and Automation Dependency. This vulnerability refers to the heavy reliance on 

automated, AI-driven control loops in an O-RAN architecture.  If an attacker gains unauthorized access 

to the RIC or its applications (xApps for near-real-time control and rApps for non-real-time operations), 

they can manipulate or disrupt these control loops.  Such access could be obtained via exploiting software 

vulnerabilities or insufficient access controls.  The consequences are severe: in the energy domain, an 

intruder could send incorrect control signals or disable certain automation routines, resulting in large-

scale misconfiguration of cell power states and significant energy waste.  In the spectrum domain, an 

attacker controlling the RIC could improperly reassign frequencies or disable incumbent protection 

mechanisms, immediately causing network congestion, harmful interference, or regulatory violations.  

Essentially, the automation that normally improves efficiency becomes a single point of failure if 

compromised. 

 

Organizational or Process Vulnerabilities. Not all vulnerabilities are technical; some stem from how AI 

systems are managed.  Without proper human oversight, rigorous testing, and incident response 

processes, the deployment of AI in RAN can introduce risk.  For example, if a new AI model or an 

update to an xApp/rApp is rushed into production without sufficient quality assurance, it might contain 

errors.  A misconfigured model for energy management could inadvertently keep thousands of cells in an 

active state unnecessarily, causing massive energy wastage across the network.  

 

In the spectrum context, insufficient testing of a DSM algorithm could lead to uncoordinated frequency 

shifts or channel selections that conflict with policy constraints.  Poor change management or lack of a 

rollback plan can exacerbate these issues.  Thus, gaps in processes – for example, inadequate validation 

of AI models or lack of a clear incident response plan for AI-related failures—can turn into security and 

reliability vulnerabilities in their own right. 

 

 
31 See, e.g., Brian Kim, Yi Shi, et al., Adversarial Attacks against Deep Learning Based Power Control in Wireless 

Communications, Oct. 2021, https://arxiv.org/pdf/2109.08139; Yalin E. Sagduyu, Yi Shi, et al., Adversarial Deep 

Learning for Over-the-Air Spectrum Poisoning Attacks, Nov. 2019, https://arxiv.org/pdf/1911.00500; Zikin Liu, 

Changming Xu, et al., Exploring Practical Vulnerabilities of Machine Learning-based Wireless Systems, April 

2023, https://deepakv.web.illinois.edu/assets/papers/rafa_nsdi_23.pdf.   

https://arxiv.org/pdf/1911.00500
https://deepakv.web.illinois.edu/assets/papers/rafa_nsdi_23.pdf
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xApps, rApps, and RIC Vulnerabilities 

 

In the O-RAN architecture, the separation of concerns between xApps (extensible applications on the 

near-real-time RIC) and rApps (radio applications on the non-real-time RIC) creates distinct attack 

surfaces.  xApps, which handle time-sensitive tasks such as scheduling, handovers, and beamforming 

adjustments, could be targeted with fast-acting adversarial attacks.  For instance, if an attacker introduces 

an adversarial perturbation into the data stream that a scheduling xApp uses, it might cause immediate 

degradation in network performance - dropped calls, increased latency, or coverage holes.  Because 

xApps influence the network almost instantaneously, any compromise can have immediate and 

noticeable impact.  On the other hand, rApps handle longer-term functions, such as policy enforcement, 

performance analytics, or capacity and spectrum planning.  An attack on an rApp might be less 

immediately obvious but can introduce slow-building issues; for example, feeding a planning rApp subtly 

poisoned data over time could lead it to make suboptimal strategic decisions, such as misallocating 

spectrum for weeks or misplanning network capacity, which accumulate into significant inefficiencies or 

regulatory non-compliance.  In short, xApps are vulnerable to real-time disruption and rApps to strategic 

manipulation, and both layers need robust protection. 

5.1.2.3 Mitigation Strategies and Recommendations 

To address the above vulnerabilities, stakeholders should adopt a multi-layered security strategy 

grounded in zero trust,32 combining technical safeguards, strong governance, and thorough testing and 

oversight.  The following recommendations draw on guidance from the O-RAN Alliance, ETSI, and 

industry best practices: 

 

Technical Safeguards. Technical safeguards for AI systems focus on securing the entire pipeline and 

ensuring robust adversarial defenses.   

 

▪ Secure AI Pipeline: Ensure the integrity of data and models throughout the AI lifecycle.  This 

includes implementing data integrity checks and filters to detect anomalies in real-time telemetry 

(preventing data poisoning attempts) and maintaining strict model and test/training data 

provenance.  All AI models should be cryptographically signed and version-controlled so that 

only verified, approved models are deployed.  New or updated functionality (e.g., xApps and 

rApps ) should be thoroughly tested in isolated sandbox environments before live rollout to catch 

any malicious or errant behavior. 

 

▪ Adversarial Robustness Testing: Subject AI models to rigorous adversarial testing and 

hardening.  This can involve adversarial training, where the model is trained on examples of 

potential attacks to improve resilience, as well as stress testing and fuzz testing of the AI-driven 

control loops.33  Continuous validation in production is also important.  Monitor the AI’s outputs 

for signs of concept drift or unusual decisions that might indicate a subtle attack.  By proactively 

probing the models with simulated attacks and edge-case scenarios, operators can identify and fix 

vulnerabilities before they are exploited. 

 

▪ Encryption and Access Control Mechanisms: Protect the RAN’s AI systems and interfaces 

through strong encryption and access management.  All communications with the RAN, 

including internal RAN subsystems (e.g., with RIC and xApps/rApps), should be encrypted in 

transit, and models should be encrypted at rest to prevent unauthorized extraction or reverse 

 
32 See Scott Rose. Oliver Borchert, et al., NIST Special Publication, Zero Trust Architecture, Aug. 2020, 

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf.   
33 Fuzz testing (or fuzzing) is a type of software testing that involves providing invalid, unexpected, or random data 

inputs to a program to identify vulnerabilities, crashes, or unexpected behaviors.  The goal is to detect bugs, 

memory leaks, security flaws, and other issues that might not be easily found through traditional testing methods. 

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
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engineering.  Access to the RIC’s management interface and the deployment of xApps/rApps 

must be tightly controlled under the principle of least privilege: each component or user gets the 

minimum access necessary and no more.  Employing a zero trust security model is advisable, 

wherein every request or data feed into the AI system is authenticated and verified, even if it 

originates from within the network.  This ensures that malicious actors cannot easily insert 

themselves into the control loop or tamper with AI inputs/outputs. 

 

Governance and Policy Frameworks. The governance and policy frameworks for AI-driven systems in 

RAN operations must ensure alignment with industry standards and robust operational oversight.  

 

▪ Alignment with Industry Standards: Communications Service Providers and network 

operators should adhere to applicable, recognized security standards and frameworks specific to 

AI in telecommunications.  For example, the O-RAN Alliance’s security specifications include 
requirements and best practices for securing the RIC and AI-driven RAN functions.  Likewise, 

frameworks from bodies such as ETSI (e.g., ETSI ENI for autonomic network management) and 

relevant 3GPP technical reports outline secure integration of AI in network architectures.  

Aligning internal policies with these industry guidelines helps ensure that the AI systems in RAN 

are designed and operated with security in mind from the start.34  

 

▪ Operational Oversight: It is important to maintain human oversight of critical AI decisions, 

especially in the early stages of deployment or for high-stakes scenarios.  Operators should 

consider implementing a “human-in-the-loop” approach whereby certain actions proposed by an 

AI (for instance, shutting down a large cluster of cells for energy saving or opening up a new 

spectrum channel in a dynamic sharing scenario) require human review or approval.  Even when 

fully automated, there should be real-time dashboards and alerts for engineers to monitor AI 

behavior.  Additionally, enforce strict change management for AI models; any update to an 

xApp/rApp or its algorithms should go through a review process, and the ability to quickly roll 

back to a previous stable version must be in place in case anomalies are detected post-

deployment. 

 

▪ Risk Management and Incident Response: Treat AI systems as critical infrastructure from a 

risk management perspective.  This means regularly conducting threat modeling exercises 

focused on AI/ML aspects of the RAN (identifying what new threats emerge from using AI, how 

they could manifest, and what controls exist or need improvement).  Based on these assessments, 

develop and refine incident response playbooks for AI-related incidents.  For example, if an AI 

model is suspected of being compromised or behaving erratically, the response plan might 

include steps to isolate or shut down that model, reverting to manual control or a backup system, 

purging any suspect data inputs, and performing a forensic analysis on the AI model and its data 

to understand the breach.  Having predefined procedures for scenarios like “AI model output is 

compromised” will greatly reduce response time and impact when an incident occurs. 

 

Testing and Assurance. Testing and assurance for AI-based systems involves several critical areas.  

 

▪ Use Case-Specific Testing: Beyond generic AI testing, validate AI behavior in the context of 

specific RAN use cases.  For energy savings features, test that algorithms for cell sleeping or 

power scaling do not inadvertently degrade network QoS or, importantly, do not interfere with 

 
34 See ETSI, Experiential Networked Intelligence (ENI) - Use Cases, ETSI GS ENI 001/005, 2023, 

https://standards.globalspec.com/std/14609445/gs-eni-005; 3GPP, Study on Artificial Intelligence (AI)/Machine 

Learning (ML) for NG-RAN, TR 38.743, 

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=4286. 
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critical services like emergency calls (e.g., ensure a cell serving an emergency call is not 

powered down by the AI).  For DMS/DSS, test AI models in controlled lab environments that 

mimic real-world spectrum conditions, including simulated interference patterns, presence of 

incumbent signals, and multi-RAT scenarios operating together, to ensure the AI makes correct 

decisions and gracefully handles edge cases before it is trusted in the field.  

 

▪ Performance Benchmarks: Establish baseline performance metrics for the RAN before and 

after introducing AI to quantitatively measure the AI’s impact and detect anomalies.  Key metrics 

might include energy consumption, spectral efficiency, network throughput, latency, and drop 

rates.  Continuous monitoring should be deployed to watch these metrics in near-real time.  The 

system can use automated counters and alarms to flag if, for instance, energy usage suddenly 

spikes or spectrum utilization drops unexpectedly, which might signal that an AI model is 

malfunctioning or under attack.  Through benchmarking and ongoing monitoring, operators can 
quickly spot when AI behavior deviates from expected norms and investigate immediately. 

 

▪ Regulatory Compliance: Ensure that AI-driven decisions stay within regulatory bounds at all 

times.  This is especially critical for spectrum management in shared bands (e.g., CBRS) where 

regulations enforce protection for incumbents.  The RAN must be configured so that no AI action 

can violate FCC or National Telecommunications and Information Administration (NTIA) rules 

(e.g., the system should prevent an AI from assigning frequencies that are off-limits or 

transmitting at powers higher than allowed).  Regular audits of the AI’s decisions against 

compliance checklists are prudent.   Consideration should also be given to how AI can support 

regulatory compliance through enhanced explainability, potentially leveraging approaches such 

as neuro-symbolic logic.35 

 

Taken together, these strategies form a robust, multi-layered defense for AI in the 5G RAN.  By tailoring 

the above recommendations to their specific network context and use cases, operators can confidently 

harness AI to achieve a more efficient, flexible, and secure next-generation wireless ecosystem. 

5.1.3 Backhaul 

The 5G backhaul architecture is a critical component of the overall 5G mobile network, providing 

connectivity between the RAN and the core network.  It serves as the intermediary for high-speed data 

transport, ensuring minimal latency, high throughput, and robust reliability required for the ultra-

connected, low latency demands of 5G. 

 

Component Function 

Physical Layer The physical infrastructure includes fiber optic cables, microwave links, and 

millimeter-wave connections.  Fiber remains the primary backbone for high-

capacity transport, while wireless links provide more flexible and cost-

effective solutions in areas where fiber installation is challenging or 

impractical. 

Core Network 

Connection 

The backhaul links connect the RAN to the core network, enabling data 

processing, routing, and service delivery. 

Aggregation 

Networks 

These are networks where multiple backhaul connections from different base 

stations converge.  The aggregation points combine traffic before sending it to 
the core network. 

 
35 See ATIS, Advancing Generative AI Implementation in Telecommunications Networks, Nov. 2024, pp. 15-16, 

https://atis.org/resources/advancing-generative-ai-implementation-in-telecommunications-networks/. 
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Component Function 

Microwave and 

Millimeter-Wave 

Links 

These high-frequency wireless communication systems provide high-capacity 

links over medium-to-long distances, offering low latency and high 

throughput. 

Edge Computing 

Nodes 

These nodes sit closer to the users, providing distributed data processing.  

They often need to communicate with the backhaul for real-time applications. 

Network Slicing 5G supports the concept of network slicing, where a virtualized and 

customized network is created for specific use cases.  Backhaul in such 

networks must dynamically manage different slices to ensure efficient and 

flexible traffic delivery. 

 

Table 6 – Key Components of 5G Backhaul 

5.1.3.1 AI Use in 5G Backhaul 

AI is transforming how backhaul networks are managed, optimized, and evolved.  Their capabilities can 

improve several areas within the backhaul infrastructure. 

 

Traffic Optimization and Resource Allocation. AI algorithms can enhance traffic optimization and 

resource allocation in 5G networks by predicting traffic patterns based on historical data, user behavior, 

and current network conditions.  These predictions allow for proactive adjustments, ensuring efficient 

traffic routing, minimizing congestion, and boosting overall throughput.  Additionally, AI systems can 

dynamically allocate bandwidth in real-time based on demand, ensuring optimal use of available 

resources.  This flexibility is especially important in 5G, where demand can fluctuate significantly, 

enabling efficient and responsive network management in highly dynamic environments. 

 

Network Optimization. AI-driven SONs allow for the autonomous configuration and optimization of 

network parameters, reducing the need for human intervention and lowering operational costs.  These 

algorithms can automatically adjust backhaul links to enhance performance and ensure efficient 

operation.  Additionally, AI plays a role in latency management by monitoring network latency in real-

time.  It can predict and correct potential issues before they lead to significant delays, and by detecting 

anomalous latency patterns, AI systems can proactively reroute traffic to alternative paths, maintaining 

optimal performance and ensuring a seamless user experience. 

 

Predictive Maintenance and Fault Detection. AI can enhance predictive maintenance and fault detection 

in 5G backhaul networks by analyzing both historical and real-time data from network components like 

routers, switches, and links.  Through anomaly detection, AI can identify abnormal patterns, such as 

performance degradation, which may indicate potential hardware failures or network congestion.  

Additionally, AI-driven predictive fault management can forecast the likelihood of hardware failure, 

enabling preventative maintenance before issues arise, ultimately reducing downtime and improving 

overall network reliability. 

 

Load Balancing and Traffic Prioritization. AI can automatically balance the load across backhaul links 

and optimize the routing of high-priority traffic, such as low-latency or mission-critical services, to 

ensure optimal user experience.  By continuously analyzing current network conditions, AI ensures that 

traffic prioritization policies are dynamically enforced, maintaining performance and meeting the 

demands of critical services while preventing congestion and ensuring efficient network utilization. 

 

Optimization of Hybrid Backhaul Networks. In 5G networks, backhaul often combines fiber and wireless 

technologies, and AI can play a role in optimizing this hybrid infrastructure.  By intelligently selecting 
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the most optimal backhaul path based on factors such as network load, weather conditions (especially for 

wireless links), and distance, AI helps enhance both cost-efficiency and performance.  This dynamic 

optimization ensures that the backhaul network can adapt to varying conditions, delivering reliable and 

efficient connectivity. 

5.1.3.2 Risks Associated with AI in Backhaul 

As 5G networks become more advanced, they also become more susceptible to a range of sophisticated 

cyberattacks, with AI playing a role in carrying out these attacks.  Denial of Service (DoS) attacks, Man-

in-the-Middle (MITM) attacks, malware and ransomware, misconfiguration vulnerabilities, and insider 

threats all pose significant risks to the security and reliability of the network.  Malicious actors are 

increasingly leveraging AI to automate and optimize their attack strategies, making traditional security 

measures less effective and complicating the task of network defense. 

 

▪ Denial of Service Attacks: DoS attacks overwhelm network resources by flooding them with 

excessive traffic, disrupting communication between 5G backhaul components such as gNodeBs 

(GNB) and the core network.  The high-capacity nature of 5G networks makes them attractive 

targets for such attacks, which can lead to significant service degradation or outages.  Malicious 

actors can leverage AI to orchestrate more sophisticated DoS attacks.  AI algorithms can analyze 

network traffic patterns to identify optimal attack strategies, making the malicious traffic blend 

seamlessly with legitimate traffic, thereby evading traditional detection mechanisms.  

Additionally, AI can dynamically adjust attack parameters in real-time to counteract mitigation 

efforts.36 
 

▪ Man-in-the-Middle Attacks: MITM attacks involve an adversary intercepting or altering 

communication between two parties without their knowledge.  In the context of 5G backhaul, 

this could mean intercepting data between DUs and the core network, leading to data breaches or 

unauthorized command execution.  AI can assist attackers in real-time analysis of intercepted 

data, enabling them to extract valuable information swiftly.  Additionally, AI can help in 

automating the process of injecting malicious data into the communication stream, making 

MITM attacks more efficient and harder to detect. 

 

▪ Malware and Ransomware: Malware and ransomware attacks involve malicious software 

infiltrating the network to steal data, disrupt operations, or encrypt critical information for 

ransom.  In 5G backhaul networks, such attacks can compromise virtualized network functions, 

leading to widespread service disruptions.  AI coding assistants lower the bar for low-skilled 

adversaries who wish to develop malware but would not otherwise have the requisite knowledge.  

Attackers can employ AI to develop malware capable of evading traditional detection methods 

by altering its behavior or appearance.  AI can also enable malware to make autonomous 

decisions, such as selecting the most valuable data to encrypt or exfiltrate, increasing the attack's 

effectiveness. 

 

▪ Configuration and Misconfiguration Vulnerabilities: Misconfigurations in network settings, 

such as open ports, weak authentication mechanisms, or incorrect routing rules, can create 

security gaps in the 5G backhaul infrastructure.  These vulnerabilities can be exploited by 

attackers to gain unauthorized access or disrupt network operations.  Malicious actors can use AI 

to automate the discovery of misconfigurations across large and complex network environments.  

AI can rapidly scan for vulnerabilities and identify the most exploitable ones, enabling attackers 

to launch targeted attacks with minimal effort. 

 

 
36 Chafika Benza et al., AI for Beyond 5G Networks: A Cyber-Security Defense or Offense Enabler, 

https://arxiv.org/pdf/2201.02730. 

https://arxiv.org/pdf/2201.02730
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▪ Insider Threats: Every network provider has challenges with insider threats in multiple areas of 

their network.  Insider Threats involve individuals within the organization, such as employees or 

contractors, who misuse their access to compromise network security.  In the 5G backhaul 

context, insiders may intentionally or unintentionally cause data breaches, disrupt services, or 

facilitate external attacks.  AI can help insiders automate processes like data exfiltration, lateral 

movement, and privilege escalation while evading traditional security controls.  For example, 

ML algorithms can analyze system logs to identify gaps in monitoring, enabling attackers to 

avoid triggering alerts.  Additionally, insiders could use AI to manipulate or tamper with system 

configurations or bypass security policies without raising suspicion.  This combination of AI's 

adaptive capabilities and the insider's privileged access makes insider threats more dangerous and 
harder to detect.37  Lastly, it is common for the credentials of an authorized administrator to be 

compromised through phishing attacks and then used to gain access into various parts of the 

network.  These attacks look like an insider attack because they are coming from within, but the 

attacker is not an insider.   

5.1.3.3 Mitigation Strategies and Recommendations 

Denial of Service Attacks. 
 

▪ Traffic Analysis and Near Real-Time Anomaly Detection: AI-driven anomaly detection 

models are particularly effective at identifying malicious traffic amidst legitimate traffic flows.  

Traditional DoS mitigation systems rely on static thresholds or predefined signatures, which are 

insufficient in a 5G environment where traffic volumes and patterns fluctuate dynamically.  

These algorithms establish baseline network behavior over time using unsupervised learning 

techniques and detect deviations such as sudden traffic spikes or abnormal patterns; for example, 

AI systems can distinguish between legitimate user-driven traffic and bot-generated traffic aimed 

at overwhelming the network.  This real-time detection enables operators to throttle or block 

suspicious traffic effectively, minimizing disruptions. AI’s precision reduces false positives that 

could otherwise disrupt legitimate services.  

 

▪ Predictive Threat Intelligence: Using time-series analysis and historical data, AI can predict 

traffic surges and differentiate between legitimate user spikes (e.g., due to new 5G services) and 

malicious traffic.  This capability enables telecom providers to anticipate potential threats and 

take proactive measures, such as pre-allocating resources or configuring defenses for high-risk 

periods.  For instance, predictive models may identify patterns suggesting an impending attack, 

allowing security teams to deploy countermeasures before the attack materializes.  This forward-

looking approach enhances network resilience and minimizes downtime during attacks.38 

 

▪ Automated Mitigation: AI-driven automation accelerates the response to Distributed Denial of 

Service/Telephony Denial of Service attacks by dynamically rerouting or filtering malicious 

traffic.  Automated systems, such as AI-enabled traffic scrubbing centers, examine data packets 

in real-time, allowing legitimate traffic to flow uninterrupted while blocking harmful requests.  

This minimizes the manual intervention required during an attack and ensures that critical 

services remain available to users.  AI-based solutions like Deep Packet Inspection (DPI) paired 

with ML models can analyze packets to identify whether traffic originates from known malicious 

sources or botnets.  Over time, these systems learn and adapt to new attack techniques, 

 
37 See, e.g., CISA, Potential Threat Vectors to 5G Infrastructure, 2021, 

https://www.cisa.gov/sites/default/files/publications/potential-threat-vectors-5G-

infrastructure_508_v2_0%20%281%29.pdf; Chafika Benza et al., AI for Beyond 5G Networks: A Cyber-Security 

Defense or Offense Enabler, https://arxiv.org/pdf/2201.02730.   
38 Alex Pavlovic, How AI/ML Can Thwart DDoS Attacks, Dec. 20, 2022, 

https://www.darkreading.com/cyberattacks-data-breaches/how-ai-ml-can-thwart-ddos-attacks.   

https://www.cisa.gov/sites/default/files/publications/potential-threat-vectors-5G-infrastructure_508_v2_0%20%281%29.pdf
https://www.cisa.gov/sites/default/files/publications/potential-threat-vectors-5G-infrastructure_508_v2_0%20%281%29.pdf
https://arxiv.org/pdf/2201.02730
https://www.darkreading.com/cyberattacks-data-breaches/how-ai-ml-can-thwart-ddos-attacks
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improving their effectiveness in mitigating evolving threats.39 

 

MITM Attacks. 

 

▪ Real-Time Traffic Anomaly: MITM attacks often exploit weak encryption, misconfigured 

backhaul components, or vulnerabilities in network protocols such as Transport Layer Security 

(TLS).  These attacks can manipulate communication channels, altering latency, packet structure, 

or encryption handshakes to remain stealthy.  AI and ML can use ML based behavioral analytic 

models to analyze network traffic in real time to baseline normal communication patterns.  

Sudden deviations, such as unusual packet latencies, unrecognized certificates, or unexpected 

rerouting of traffic, can trigger alerts.  AI driven time series models, such as Long Short-Term 

Memory (LSTM) networks, can detect temporal anomalies in traffic flow that may signal 

unauthorized interception or packet alteration.  Lastly, AI enhances deep packet inspection tools 

by analyzing packet contents and structure to detect injected malicious code, unauthorized 

alterations, or unexpected payload sizes.  An example of AI-powered anomaly detection can 

identify changes to TLS handshakes or certificate anomalies, signaling an active MITM attack.  

An earlier CSRIC report found that securing traffic at the protocol layer is vital to preventing 

such threats.40 

 
Malware and Ransomware. 

 

▪ Anomaly Detection: By analyzing vast amounts of network traffic data, AI algorithms can 

identify anomalous patterns indicative of malicious activity, enabling early detection of threats 

that traditional signature-based methods might miss.  For instance, AI-based ransomware 

detection frameworks utilize behavioral analysis to identify ransomware activities in real-time, 

allowing for prompt intervention to prevent data encryption and exfiltration. 

 

▪ Adaptive Security Measures: AI can facilitate the development of adaptive security measures 

that evolve alongside emerging threats.  In the context of 5G networks, where the integration of 

AIoT (Artificial Intelligence of Things) devices increases the attack surface, AI-driven security 

solutions can dynamically adjust to new vulnerabilities.  For example, AI-powered intrusion 

detection systems in Multi-access Edge Computing (MEC) environments can detect and mitigate 

malware and ransomware attacks by analyzing device behavior and network traffic in real-time, 

ensuring the resilience of 5G backhaul infrastructures.41 

 

Configuration and Misconfiguration Vulnerabilities. 
 

▪ Analysis of Network Configurations: AI algorithms can analyze network configurations to 

identify anomalies or deviations from established baselines, allowing for the prompt 

identification of potential vulnerabilities.  For instance, AI-driven systems can monitor network 

parameters and automatically adjust settings to optimize performance and security, reducing the 

risk of human error.42  Furthermore, AI and ML facilitate predictive maintenance by analyzing 

 
39 Andrew Wooden, Nokia Builds Europe’s ‘biggest anti-DDoS solution’ for an IXP Environment, Sept. 16, 2024, 

https://www.telecoms.com/security/nokia-builds-europe-s-biggest-anti-ddos-solution-for-an-ixp-environment.   
40 CSRIC VIII, HTTP/2 Vulnerabilities and Mitigations (2022), https://www.fcc.gov/sites/default/files/CSRIC8-

Report-SecurityVulnerabilitiesMitigationsHTTP2-0623.pdf.   
41 See S. M. Cheng, B. K. Hong, et al.,, Attack Detection and Mitigation in MEC-Enabled 5G Networks for AIoT, 

IEEE Internet of Things Magazine, vol. 5, no. 3, pp. 76-81, Sept. 2022, 

https://ieeexplore.ieee.org/document/9945850; Lucy Colback, Technology and Cyber Crime: How to Keep Out the 

Bad Guys, Financial Times, July 3, 2024, https://www.ft.com/content/8a79ab25-c902-4110-bcb8-be2fd422f6bf.   
42 See, e.g., Oral Mohan, 5G Network AI Models: Threats and Mitigations, Nov. 15, 2024, 

 

https://www.telecoms.com/security/nokia-builds-europe-s-biggest-anti-ddos-solution-for-an-ixp-environment
https://www.fcc.gov/sites/default/files/CSRIC8-Report-SecurityVulnerabilitiesMitigationsHTTP2-0623.pdf
https://www.fcc.gov/sites/default/files/CSRIC8-Report-SecurityVulnerabilitiesMitigationsHTTP2-0623.pdf
https://ieeexplore.ieee.org/document/9945850
https://www.ft.com/content/8a79ab25-c902-4110-bcb8-be2fd422f6bf
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historical data to forecast potential configuration issues before they impact network performance.  

This proactive approach enables network operators to address vulnerabilities preemptively, 

ensuring the resilience and reliability of 5G backhaul infrastructures.  By automating routine 

configuration tasks and continuously monitoring discrepancies, AI reduce the likelihood of 

misconfigurations that could be exploited by malicious actors.43 

 
▪ Traffic analysis and near real-time anomaly detection should be considered to identify attackers 

performing remote port scanning with intention to identify vulnerabilities. 

 

Insider Threats. 

 

▪ Behavior Deviation Detection: Insider threats pose a critical vulnerability to the cellular 

backhaul infrastructure, where compromise can lead to data interception, service disruption, or 

unauthorized access deep into the core network.  In the 5G environment, backhaul networks are 

more complex and distributed, making traditional monitoring methods less effective.  AI offers 

transformative capabilities to detect and mitigate insider threats within backhaul systems.  By 

establishing dynamic baselines for normal activities, such as expected traffic flows, access 

patterns to routers, switches, and edge computing nodes, AI systems can rapidly detect deviations 

that suggest malicious insider behavior or misuse of privileged credentials.  This enables early 

identification of potential threats like unauthorized configuration changes, data exfiltration, or 

anomalous command executions targeting critical transport links. 

 

▪ Behavioral Analytics: AI further enhances security by integrating behavioral analytics across 

multiple backhaul components, correlating access logs, traffic anomalies, and device interactions 

in real-time.  In high-capacity hybrid backhaul environments, where fiber and wireless links 

coexist, AI can prioritize and automate responses to suspected insider threats, such as isolating 

compromised network slices or rerouting traffic away from suspicious nodes.  By applying 

predictive risk models, telecom operators can identify individuals or assets with elevated insider 

risk before exploitation occurs.  Leveraging AI-driven monitoring and mitigation strategies is 

essential for maintaining the integrity, reliability, and security of cellular backhaul networks that 

underpin 5G critical infrastructure.44 

 

AI models are central to realizing the full potential of 5G backhaul networks by enhancing efficiency, 

scalability, and adaptability.  However, their deployment introduces new challenges, particularly around 

security, model robustness, and the consequences of failure.  By adopting strong mitigation strategies, 

such as continuous monitoring, data validation, and adversarial robustness, operators can ensure that AI-

powered backhaul systems are secure, reliable, and effective in supporting the demands of 5G networks. 

 

 

 

 

 
https://blog.checkpoint.com/artificial-intelligence/5g-network-ai-models-threats-and-mitigations/; Ericsson, The AI 

Standard for 5G RAN: what it is, why it’s needed, and how to get there, Nov. 7, 2023, 

https://www.ericsson.com/en/blog/2023/11/ai-ml-5g-ran-3gpp.   
43 See, e.g., Mohammed Nasser Al-Mhiqani et al, A Review of Insider Threat Detection: Classification, Machine 

Learning Techniques, Datasets, Open Challenges, and Recommendations, Applied Sciences 10, no. 15, 2020, 

https://www.mdpi.com/2076-3417/10/15/5208; 5G Americas, How Generative AI Could Impact Network Planning, 

RAN Configuration, and Spectrum Management, Mar. 2024, https://www.5gamericas.org/how-generative-ai-could-

impact-network-planning-ran-configuration-and-spectrum-management/.   
44 Mohammed Nasser Al-Mhiqani et al, A Review of Insider Threat Detection: Classification, Machine Learning 

Techniques, Datasets, Open Challenges, and Recommendations, Applied Sciences 10, no. 15, 2020, 

https://www.mdpi.com/2076-3417/10/15/5208.   

https://blog.checkpoint.com/artificial-intelligence/5g-network-ai-models-threats-and-mitigations/
https://www.ericsson.com/en/blog/2023/11/ai-ml-5g-ran-3gpp
https://www.mdpi.com/2076-3417/10/15/5208
https://www.5gamericas.org/how-generative-ai-could-impact-network-planning-ran-configuration-and-spectrum-management/
https://www.5gamericas.org/how-generative-ai-could-impact-network-planning-ran-configuration-and-spectrum-management/
https://www.mdpi.com/2076-3417/10/15/5208
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5.1.4 5G Core Network 

The 5G Core Network (5GC or core) is an architecture defined by 3GPP that serves as the backbone of 

5G communication systems.45  Unlike its predecessors, the 5GC is designed to be a fully cloud-native,46 

service-based architecture, meaning it may be built using virtualized software functions.47  It is composed 

of multiple Network Functions (NFs), some of which are optional, each exposing via standardized 

Service Based Interfaces (SBI) a defined set of services or capabilities.  The adoption of SBI interfaces 
enables authenticated and authorized NFs to consume the services and data exposed by other NFs in the 

5GC.  Furthermore, the SBI allows new NFs to be defined and adopted into the 5GC over time without 

impact on already existing NFs.   

 

In terms of AI functionality in the Core, the Network Data Analytics Function (NWDAF) was initially 

defined to support rule-based analytics, but later enhancements saw the introduction of AI capabilities, 

namely training and inference.  In the core, the NWDAF is the AI platform which, thanks to the adoption 

of SBI, can consume data from other NFs and provide its training and inference services to other NFs in 

the 5G Core.  Besides the NWDAF no other core NF has standardized AI capabilities.  And while it 

cannot be ruled out that other core NFs are not using AI to some degree, such information is not in the 

public domain.  As such, the remainder of this section focuses on the NWDAF with the observation that 

use cases for the adoption of NWDAF with AI capabilities are currently being studied by operators; 

however, no live deployments were identified for inclusion in this Report.  The inclusion of NWDAF is 

exemplary and not intended to be taken as a normative example.  

 

The 5G Core architecture is depicted in Figure 4 and described in Table 7 below which also shows the 

5G RAN & 5G UEs. 

 

 
 

Figure 4 – 5G Core Architecture 

 
45 See Harri Holma, Harri, Antti Toskala, et al.,. 5G Technology: 3GPP Evolution To 5G, Advanced. Second 

edition, Chichester, England: John Wiley & Sons Ltd, 2024, at 70-75; 5G Core Network Architecture – A 

Beginner’s Guide to Next Generation Connectivity, Niral Networks, Mar. 14, 2024, https://niralnetworks.com/5g-

core-network-architecture/?form=MG0AV3; 3G4G Blog, Tutorial: Service Based Architecture (SBA) for 5G Core, 

Feb. 9, 2018, https://blog.3g4g.co.uk/2018/02/tutorial-service-based-architecture-sba.html.   
46 Cloud native is an approach to building, deploying, and managing applications that fully leverage cloud 

computing environments.  See, e.g., AWS, What is Cloud Native?, https://aws.amazon.com/what-is/cloud-

native/?form=MG0AV3; Microsoft, What is Cloud Native?, https://learn.microsoft.com/en-

us/dotnet/architecture/cloud-native/definition?form=MG0AV3. 
47 NetworkBuildz, 5G Core Network Architecture: Detailed Guide, Jan. 25, 2023, https://networkbuildz.com/5g-

core-network-architecture/?form=MG0AV3.   

https://niralnetworks.com/5g-core-network-architecture/?form=MG0AV3
https://niralnetworks.com/5g-core-network-architecture/?form=MG0AV3
https://blog.3g4g.co.uk/2018/02/tutorial-service-based-architecture-sba.html
https://aws.amazon.com/what-is/cloud-native/?form=MG0AV3
https://aws.amazon.com/what-is/cloud-native/?form=MG0AV3
https://networkbuildz.com/5g-core-network-architecture/?form=MG0AV3
https://networkbuildz.com/5g-core-network-architecture/?form=MG0AV3
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Network Function Description 

Access and Mobility 

Management 

Function (AMF) 

(Mandatory) 

A key control plane entity responsible for handling UE registration, connection 

management, and mobility.48  It interfaces to the 5G RAN and manages 

authentication and supports handovers between 5G RAN network cells to 

maintain connectivity as users move.   

Session Management 

Function (SMF) 

(Mandatory) 

Handles the establishment, modification, and termination of user sessions.49  It 

manages IP address allocation, policy enforcement, and communication with 

the data plane to ensure efficient traffic routing and resource usage.  

User Plane Function 

(UPF) (Mandatory) 

Responsible for routing and forwarding user data traffic between devices and 

external networks.  It implements packet inspection, traffic shaping, and QoS 

enforcement based on policies from the Policy Control Function.  

Policy Control 

Function (PCF) 

(Optional) 

Responsible for defining and enforcing network policies that govern resource 

allocation, QoS, and user access based on subscription and network conditions.  

NWDAF (Optional) 

An optional NF in 5G networks that collects, analyzes, and provides insights 

from network data to optimize performance and enhance user experience.  It 

leverages advanced analytics and ML to predict network behaviors, detect 

anomalies, and support informed decision-making processes. 

 

Table 7 – 5G Core Network Functions 

 

5.1.4.1 AI Use in the 5G Core 

The initial release of 3GPP 5G standards, Release 15, defined the NWDAF to support basic analytic 

capabilities.  In Release 17 (2022), 3GPP enhanced the NWDAF to support AI capabilities.50  The 

NWDAF generates two types of analytics data, namely statistics data and prediction (inference) data, for 

specific use cases.  One example of many use cases is UE Mobility analytics whereby past and future 

(predicted) data of the UE location can be utilized by the network to improve end-user experience and 

optimize network resource utilization.  The NWDAF exposes a set of 3GPP standardized APIs via which 

analytics data for specific use cases can be requested by other network functions.  The role of the 

NWDAF is to generate and provide the requested analytics data; it does not undertake any actions based 

on the generated analytics data nor does it know how that data eventually will be used.  The NWDAF 

may provide the same analytics data to multiple different network functions with each deciding 

independently from the NWDAF how it will use the received analytics data.  

 

▪ Model Training. The NWDAF utilizes multiple different statistical/predictive models for 

different use cases and even in the case of the same use case different models may be used; for 

example, using different algorithms.  3GPP standards do not define the models used in NWDAF 

and as such are vendor/operator specific.  Typically, a model will follow a ML lifecycle whereby 

it is designed, trained, and tested in a development environment first and, after passing quality 

 
48 Telecom Trainer, What is the Role of the Access and Mobility Management Function in the 5G Core Network, 

Jan. 15, 2024, https://www.telecomtrainer.com/what-is-the-role-of-the-access-and-mobility-management-function-

amf-in-the-5g-core-network/.   
49 What is the 5G Session Management Function (SMF)?, Dec. 29, 2022, 

https://techcommunity.microsoft.com/blog/azureforoperatorsblog/what-is-the-5g-session-management-function-

smf/3693852.   
50 Xingqin Lin, Artificial Intelligence in 3GPP 5G-Advanced: A Survey, (AI Survey) 

https://arxiv.org/pdf/2305.05092. 

https://www.telecomtrainer.com/what-is-the-role-of-the-access-and-mobility-management-function-amf-in-the-5g-core-network/
https://www.telecomtrainer.com/what-is-the-role-of-the-access-and-mobility-management-function-amf-in-the-5g-core-network/
https://techcommunity.microsoft.com/blog/azureforoperatorsblog/what-is-the-5g-session-management-function-smf/3693852
https://techcommunity.microsoft.com/blog/azureforoperatorsblog/what-is-the-5g-session-management-function-smf/3693852
https://arxiv.org/pdf/2305.05092
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assurance checks, delivered into the production environment to run on the NWDAF in the 

operator’s network.   

 

In the case of predictive ML models, the NWDAF can further train/retain the model using 

network data (referred to as Online Training) and check for its accuracy against ground truth 

data, which it can obtain from the network at the future predicted point in time.  If the model 

accuracy fails to improve, then it can be brought back into the development environment where it 

can undergo various improvement steps or even be replaced altogether.  In the development 

environment, the source of the training/testing data may vary based on the use case and customer 

to which the NWDAF model will be deployed.  In the production environment, the NWDAF will 

subscribe to multiple different data sources depending on the specific analytics use case in order 

to obtain the necessary data to train/retrain an ML model.  Examples of such data sources are the 

network NF, such as AMF and SMF, but also Operations, Administration, and Maintenance 

(OAM) systems.  Enhancements to 3GPP Releases also made it possible for multiple NWDAFs 

in a network to collaborate in training a model via so called Horizonal and Vertical Federated 

Learning mechanisms.51  

 

▪ Model Inference. The NWDAF can receive analytics requests from various NFs (e.g., AMF, 

SMF) for prediction data related to a specific use case targeting a future time period and other 

parameters such as geographical location for example.  If the NWDAF does not have a model 

fully trained to service the analytics request, for example, the model has not been trained on 

historical data for the time period requested (e.g., 6 a.m. -7 a.m.), it will trigger training of the 

available model using the appropriate data sources for that use case.  Once it has a trained model, 

it will run inference based on the request it received and provide the requested prediction data.  It 

is the responsibility of the network function that requested the analytics prediction data to decide 

how to use that data; NWDAF has no role to play in how the analytics data it provides are 

ultimately used.  

 

AI Use Case Model. One of the many analytics service use cases standardized by 3GPP in the NWDAF is 

UE Mobility analytics for both statistics and predictions.  Being able to predict the mobility patterns of 

subscribers -- such as the expected number of subscribers in a particular geographical location during a 

future timeframe and how many are expected to move to new location and during what time period -- is 

information that networks can use to improve end user experience and optimize network resource 

utilization.  Many network functions/entities in the network may be interested in obtaining UE Mobility 

prediction data in order to optimize the resources they control. 

 

To obtain UE Mobility prediction data, a network function first needs to discover a NWDAF that 

supports that specific use case and geographical area(s).  It then requests the discovered NWDAF, which 

then either selects a new ML model or retrains an existing ML model that supports UE Mobility 

predictions use case.  The request to the NWDAF would typically include information such as the 

identity of the subscriber(s), the time period, and the area that is of interest to the requester.  The 

NWDAF would then run (perform inference) using its selected ML model for UE Mobility for this 

request and return the prediction data results to the requestor.  The requestor may or may not then take 

the received NWDAF prediction data into account when executing subsequent actions.  Such actions may 

include adjusting network processing resources to address bandwidth needs, selecting and reselecting 

network resources geographically closer to the subscriber to improve latency, and adjusting network 

parameter configurations to help reduce the overall network signaling overhead.  Network 

 
51 Horizontal and Vertical Federated Learning are two different approaches to distributed machine learning that 

allow multiple parties to train models collaboratively without directly sharing their data. Horizontal Federated 

Learning (HFL), also known as sample-based federated learning, is used when different organizations or entities 

have similar types of data but from different user bases.  Vertical Federated Learning (VFL), also known as feature-

based federated learning, applies when different organizations have overlapping users but distinct data features. 
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entities may utilize the NWDAF predictions data in different ways.  For example, the AMF may use UE 

Mobility prediction data to optimize its paging strategy and hence conserve the usage of scarce radio 

resources, whereas the SMF may use that same prediction data to select an alternative user plane resource 

that is closer to the UE such that latency is reduced resulting in improved end user experience.  

5.1.4.2 Risks Associated with AI in the 5G Core 

At the time of this Report’s issuance, NWDAF for analytics prediction use cases were still in the early 

stages of evaluation by operators, and no live deployments were identified or disclosed for inclusion in 

the Report.  As such, the following is a general analysis based on assumptions and cybersecurity 

practices. 

 

Again, taking UE Mobility analytics as a use case example, if the integrity of the NWDAF capabilities is 

compromised during any of its main phases, such as Machine Learning Operations (MLOps), Online 

Training and/or Inference, it could potentially result in the NWDAF providing compromised and 

incorrect prediction data.  If compromised prediction data is acted upon without proper checking of the 

intended outcomes of those actions, it could potentially lead to negative outcomes, including degradation 

of subscriber experience and/or network resource utilization.  For example, if the AMF receives 

compromised prediction data from NWDAF which it uses as input to its paging strategy it could result in 

the network paging for the UE in the wrong geographical areas initially and hence waste scarce network 

resources and increase the UE connection setup time.  A further example, if the SMF receives 

compromised prediction data from NWDAF, then the SMF could end up selecting an alternative, but less 

optimal UPF which may result in increased user data latency and poor end user experience. 

5.1.4.3 Mitigation Strategies and Recommendations 

Network entities using NWDAF prediction data would do so for a reason: they intend to gain some 

benefit from using that data otherwise they will not use it.  Therefore, entities using NWDAF prediction 

data can be expected to continuously monitor performance metrics to measure improvements or 

degradation of outcomes and can hence detect if the NWDAF prediction data is beneficial or not and, 

where deemed not useful, suspend or discontinue its use.   

 

For the UE Mobility use case example mentioned above, the AMF and SMF can be expected to collect 

and monitor relevant metrics from the network to measure performance gains or losses and in the case of 

the latter take corrective actions, one of which may be to suspend or discontinue the use of NWDAF 

predictions and flag this for further investigation.  

 

The NWDAF can also perform accuracy monitoring of its ML Model prediction data since it has access 

to the ground truth data; for example, it can collect actual network data for the subscriber(s) and 

geographical area and time period for which the prediction was requested and then compare it to its 

prediction data.  Where there is a gap, the NWDAF can trigger accuracy improvement actions such as 

ML Model retraining, select a different ML model with alternative algorithms, and/or discontinue its use. 

 

In general, the generic mitigations listed in Appendix B: Generic Threats & Mitigations to the AI 

Lifecycle, can be considered applicable to the NWDAF and its development and production 

environments.   

 

▪ Access Controls: Access control security mechanisms can help prevent unauthorized access to 

NWDAF-related training and test data in both development and production environments and 

access to NWDAF analytics services and data in the production environment.  Access control 

security mechanisms can also help prevent unauthorized access to the discovery of, subscription 

to, and usage of data and services from other network entities -- for example, to prevent a rogue 

network entity, including a rogue NWDAF, from gaining access to network function services and 

data.  Access control security mechanisms should support mutual authentication and 
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authorization and be used to ensure that only mutually authenticated and authorized entities can 

discover and gain access to services and data sources.  Network deployments with NWDAF 

should ensure that such access controls are supported and enforced throughout the network.  

Applicable standardized mechanisms defined by 3GPP should be leveraged where possible. 

 

▪ Data Protection: Encryption and integrity protection of data can help prevent the usage and 

manipulation of that data.  Data sources at rest and in transit should be encrypted and their 

integrity protected as appropriate.  Data sources in transit includes all data (e.g., training/test 

data, models, model parameters) transferred between the NWDAF development and production 

environments.  It also includes data transferred between NWDAFs themselves in the production 

environment (as there can be multiple NWDAFs deployed) and between NWDAFs and other 

NFs (e.g., AMF, SMF) in the production environment.  Applicable standardized mechanisms 

defined by 3GPP should be leveraged where possible.  Included in this consideration is the 

handling of subscriber specific data. 

 

Additional security and reliability controls for consideration and application where deemed necessary 

and/or feasible are listed below. 

 

▪ NWDAF Model Accuracy Checking: The NWDAF checks the accuracy of its prediction data 

against ground truth data and trigger model retraining and/or redesign if observed results are not 

acceptable. 

 

▪ Continuous Monitoring & Prediction Data Usage Control: Users of NWDAF prediction data 

have controls in place to make decisions to continue/discontinue/suspend use of NWDAF 

prediction data.  While this will be implementation-specific, a simple example of this is 

continuously monitoring whether the prediction data is resulting in improved outcomes for a 

targeted use; if satisfactory outcomes are not observed, then suspend/discontinue its usage. 

 

▪ Overload Protection: Data Sources also have overload protection mechanisms in place to 

prevent resources being overloaded/exhausted.  For example, an ill-behaving/compromised 

NWDAF issuing large amounts of subscription requests requiring event notifications be issued 

frequently (e.g., every 10 seconds as opposed to every 10 minutes).  This is not specific to 

NWDAF; any ill-behaving/compromised network function could also inflict the same harm on 

another network functions. 

 

▪ Anomaly Detection: Leverage Anomaly detection mechanisms to detect abnormal behavior.  

For example, an NWDAF might be consuming abnormally high amounts of computing resources 

for training, or network bandwidth utilization may be abnormally high on certain interfaces.  

These anomalies could be indicators of a compromised NWDAF, but these may not be exclusive 

to NWDAF. 

5.1.5 Operations Support Systems 

The OSS in a telecommunications network is used to provision and manage the network and network-

based services and constitutes the “management plane” for the entire network.  OSS plays a role in 

automating and orchestrating various network operations, including tasks such as resource management, 

configuration management, performance monitoring, capacity management, fault management, and 

security management.52  In 5G networks, OSS encompasses a variety of applications designed to enable 

 
52 OSS is often integrated with the Business Support System (BSS), but they are separate and disparate parts of the 

network.  The BSS is used for billing, managing revenues, and collecting usage data for the billing of services, 

while the OSS is used to manage the actual network.  For example, in service provisioning, when a customer 
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and streamline multiple critical functions, broadly categorized into three areas: planned network 

operations, unplanned network operations, and performance optimization. 

 

Planned network operations involve the deployment and life-cycle management of network functions.  

OSS applications in this area are responsible for planning, designing, and implementing network 

infrastructure and services.  This includes deploying network elements, provisioning resources, 

configuring network elements, scaling resources, restoring resources and ensuring that new services are 

seamlessly integrated into the existing network.  Additionally, OSS manages the entire life cycle of 

network functions, from initial deployment to updates and eventual decommissioning.  Effective 

management in this area ensures that the network can adapt to evolving demands and technological 

advancements while maintaining service continuity. 

 

Conversely, unplanned network operations focus on the detection and remediation of faults and 

disruptions.  OSS applications play a crucial role in monitoring the network for any anomalies or issues 

that may impact service quality.  When a fault is detected, OSS helps isolate the problem, identify its root 

cause, and initiate corrective actions to restore normal operations as quickly as possible.  This proactive 

approach minimizes downtime and ensures that customers experience minimal disruptions.  By 

automating fault management processes, OSS enhances the efficiency and responsiveness of network 

operations. 

 

Performance optimization encompasses the monitoring and implementation of performance-enhancing 

configuration changes.  As described in Table 8, OSS applications continuously track key performance 

indicators to assess the health and efficiency of the network.  Advanced analytics and artificial 

intelligence are leveraged to identify patterns, predict potential issues, and recommend configuration 

changes that can improve network performance.  By implementing these enhancements, OSS ensures that 

the network operates at its optimal level, delivering high-quality service to customers.  This proactive and 

data-driven approach helps network operators stay ahead of potential problems and adapt to changing 

conditions in real-time. 

 

Application Function 

Service order 

Management and 

orchestration 

Manages and coordinates customer service requests from initiation to fulfillment. 

It ensures that all necessary network resources and processes are properly aligned 

to deliver the requested service efficiently. This application automates service 

provisioning, ensuring timely and accurate execution of orders, thereby 

enhancing customer satisfaction and operational efficiency. 

Inventory and 

topology 

management 

Maintains an accurate record of all network assets and their configurations. It 

maps the physical and logical layout of the network, ensuring efficient resource 

allocation and easy troubleshooting. This application helps network operators 

track the status and location of network elements, facilitating optimal network 

performance and reliability. 

Fault management Responsible for detecting, isolating, and resolving network issues promptly. It 

ensures that any faults or disruptions in the network are identified quickly, 

minimizing service downtime and maintaining optimal performance. This 

application helps operators proactively address potential problems, ensuring a 

reliable and resilient network for customers. 

 
requests a new service, the BSS handles the order management, billing, and customer information.  It then 

communicates with the OSS to configure the network elements and ensure the service is provisioned correctly.  

After reviewing the BSS functionality, CSRIC tentatively concluded that there were no credible ways in which the 

use of AI within the BSS could cause network disruptions. 
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Application Function 

Monitoring and 

reporting 

Continuously tracks the performance and health of the network, ensuring real-

time visibility into its operations. It generates detailed reports that help operators 

analyze trends, detect anomalies, and make informed decisions. This application 

is essential for maintaining optimal network performance, quickly addressing 

issues, and enhancing overall service quality. 

Performance 

management and 

analytics/AI 

Harnesses advanced data analytics and artificial intelligence to optimize network 

performance, predict potential issues, and make informed decisions. It 

continuously monitors key performance indicators, identifying trends and 

predicting potential issues before they impact services. This proactive approach 

enables operators to make data-driven decisions, ensuring efficient, reliable, and 

scalable network operations. 

 

Table 8 – Key OSS Applications 

 

5.1.5.1 AI Use in OSS 

The telecommunications industry strives to achieve autonomous networks, which can adapt their size and 

capacity based on real-time traffic patterns.  By transitioning to a virtualized network where all functions 

are software-based rather than hardware-based, this goal becomes attainable.  AI plays a crucial role in 

dynamically managing network resources, predicting when expansion is necessary by analyzing 

historical data and current traffic patterns.  In such scenarios, the OSS AI system can initiate new 

instances of required functions to alleviate bottlenecks.  Conversely, AI can also determine when it is 

appropriate to shrink the network as traffic levels decrease, ordering the removal of certain instances of 

the network elements that are not needed, thereby optimizing resource utilization.   

 

Having a network that can be scaled to meet increasing traffic demands by creating more instances of the 

required services and routing additional traffic to these new instances is crucial.  This approach 

eliminates the need for network operators to “over engineer” their networks by incorporating redundant 

components, excessive capacity, or overly complex configurations in an anticipation of potential need.  

For instance, a network designed with far more bandwidth than the anticipated maximum demand, or 

layers of unnecessary hardware and software that do not directly contribute to performance or reliability, 

could be considered over-engineered.  Consequently, the integration of OSS AI represents a significant 

cost reduction in terms of appliances, licensing, and power consumption for which the industry 

historically had to plan. 

 

Given that software must run on some form of hardware (servers), the ability to add and remove software 

functions on dedicated hardware is essential.  Orchestration, directed by AI tools, plays a pivotal role in 

this process.  AI determines when network functions need to be reduced, terminating some instances 

from servers, and when other functions should be added, creating a dynamic environment.  Inventory 

plays a critical role in modern network management, especially in highly scalable and dynamic 

architectures.  As networks expand or contract based on demand, keeping track of available resources, 

such as servers, virtual instances, and software components, ensures efficient operation, cost 

management, and security.  With AI-driven orchestration handling network scaling, dynamic inventory 

management becomes essential for tracking which assets are active, retired, or needed.  Without an up-to-

date inventory, it would be impossible to monitor, optimize, and protect network components.  AI helps 

automate this process, providing real-time visibility into infrastructure while supporting virtualization, 

which allows services to adapt seamlessly without unnecessary hardware investments.   

 

Beyond life-cycle management and scaling, AI can also facilitate autonomous operational decisions 

based on network observability.  Logs from multiple network functions can be analyzed to identify issues 
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or degradation thresholds that may require reporting or, in some cases, necessitate so-called automated 

action for remediation (AI closed-loop), which involves detecting problems, such as network congestion, 

hardware failures, or security breaches, and taking corrective actions automatically to restore normal 

operations.  Automated remediation actions include traffic rerouting, service restarts, resource scaling, 

and security responses.  Closed loops help reduce the window of degradation and minimize Mean-Time-

To-Restore (MTTR), but they require thorough testing and validation, along with a period in an 

intermediate human-assisted state to mitigate any unforeseen issues.  This ongoing consideration 

becomes increasingly relevant as greater levels of automation and autonomy are introduced into the 

network management plane. 

 

AI enhances the efficiency and adaptability of OSS in the RAN, particularly as O-RAN services and 

equipment emerge.  It supports key tasks like spectrum management, capacity forecasting, interference 

reduction, and energy efficiency by dynamically adjusting RAN radio and baseband configurations.  AI-

driven automation, traditionally handled by SON platforms, is now extending to the O-RAN RIC 

platform, which hosts rApps designed to optimize RAN parameters for specific use cases.  These rApps, 

powered by AI, not only improve performance but also lower the total cost of operation.  To maximize 

OSS benefits, it is crucial to ensure data integrity, maintain transparency in AI decision-making, and 

rigorously test AI-generated outcomes across various scenarios. 

 

Potential Use Cases. 

▪ Model Training. AI/ML algorithms utilize historical and real-time network data to improve 

predictive models.  Operators constantly collect network data, key performance indicators 

(KPIs), traffic patterns, and network element logs to refine AI-driven decisions on anomaly 

detection, optimization, and fault management. 

 

▪ Power and Configuration Management. AI can dynamically adjust power levels, antenna tilt, 

and spectrum allocation within the RAN based on traffic demand, environmental factors, and 

network congestion.  This improves energy efficiency and optimizes service quality while 

reducing operational costs.  

 

▪ Network Scaling. AI-driven orchestration in OSS enables adaptive scaling of virtualized 

network functions, ensuring resources align with demand.  As described above, the AI workload 

can be used to scale the network elements up and down.  As traffic increases, the AI model will 

provide a signal to the OSS to start new virtualized network element instances to support the 

additional workload.  As the traffic decreases, some of these virtual network element instances 

will be terminated.  This helps with power consumption and using the resources in an optimal 

way.   

5.1.5.2 Risks Associated with AI in OSS 

It is unlikely that AI could be used to directly attack a network OSS since initial access to the network is 

required.  The telecommunications network management plane is isolated from external (internet) 

connections, meaning that all the inputs and outputs of the OSS are contained within the operator’s 

network and are isolated from the outside world. AI/ML makes it faster and easier for attackers to 

identify critical vulnerabilities and gain access to the network.  Under a zero trust framework, operators 

must assume breach and build additional layers of security to secure OSS.  An attacker must first gain 

access to the network management plane before launching any attacks.  This scenario is similar to 

traditional, non-AI threat surfaces.   

 

Dealing with the Potential Use Cases. 

▪ Data Poisoning/Leakage: Key unintended consequences from the use of AI in Network OSS 

include data leakage or poisoning and unexpected outcomes from learning or prediction-based 
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workloads.  Data poisoning will happen during the training phase of the AI/ML models.  This 

requires the attacker to gain access to the operator’s network or the ISV’s environment and be 

able to manipulate existing historical network data that would be used specifically for this 

training.  Such poisoning will lead to inaccurate prediction and leads to degradation of network 

performance and improper utilization of network assets.  
 

▪ False Traffic Generation: For instance, AI can be used to perform an attack on the network by 

creating fake traffic targeting a given network element.  An attacker might aim to improperly 

alter transmitted power and antenna settings at specific sites where AI workloads are used for 

dynamic RAN power and configuration management.  This can be done by faking traffic at the 

given site which will force the AI/ML system to add resources while it is not really needed.  This 

causes unrequired depletion of computing resources in the network. 

 

▪ Model Manipulation: If an AI-based workload within the OSS is compromised, an attacker 

could manipulate the underlying model and workload, leading to network degradation and other 

adverse effects by improperly allocating resources where they are not needed or not allocating 

resources where they are needed.  This type of attack would be similar to a hacker that is able to 

access an OSS that does not utilize AI/ML.  Essentially, adding an AI workload to the OSS 

increases its risk surface, as would adding any other software module. 

5.1.5.3 Mitigation Strategies and Recommendations 

Several critical areas must be addressed to prevent unintended consequences from the use of AI in OSS. 

▪ Access to the Network: The need to secure network access is a known security risk.  The 

importance of ensuring that only legitimate users access the network is an important factor in 

preventing bad actors from accessing the management plane of the network.  Standard zero trust 

security measures needs to be followed, and overlapping security measures based on assumed 

breach should be implemented based on a risk-based determination. 

 

▪ Safeguarding Data: Any data used to train, fine-tune, and query the AI model must be protected 

whether on site or in the cloud, and provenance of training data must be tracked.  

 

▪ Output Testing and Validation: Quality assurance and testing/validation techniques used for 

traditional orchestration and automation scripts must be used for the AI-assisted versions of these 

scripts.  For traditional ML use cases, input-output testing should be conducted in a variety of 
simulated and real-world conditions before production deployment.  Automated test execution 

should be independently tested from the automated test creation, ensuring thorough validation of 

AI-generated automation/orchestration scripts. 

 

▪ Periodic Internal Assessments: Operators should periodically reassess AI output to ensure it 

adapt to changing scenarios and inputs.  As AI algorithms modify RAN parameters based on 

usage, it is important to verify that the AI's output shifts as expected with usage changes. 

 

▪ Monitor Unexpected Network Behavior: Because AI models react to data and variable traffic 

patterns, an attack might be disguised as unexpected traffic, either localized or distributed.  This 

traffic can cause the AI model to allocate resources in a way that negatively impacts normal 

operations.  A human-in-the-loop approach should be used.  Human observers must validate any 

excessive, abnormal traffic that does not match historical patterns to avoid misallocation of 
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resources, in addition other anomaly detection techniques can be used to alert the network 

operator of unexpected behavior. 

5.2 6G Networks 

6G represents the next generation of wireless communication technology that promises faster speeds, 

lower latency, and enhanced connectivity to support innovative applications and services beyond the 

capabilities of 5G.  The 6G network concept, now in its initial stages of design for anticipated launch in 

2030, fundamentally draws on the 3GPP mobile broadband standards and specifications.  Its operational 

concept also derives from the O-RAN Alliance standards and the ITU-R International Mobile 

Telecommunications-2020 (IMT-2020) guidelines for 5G networks, devices, and services.  The 

deployment and findings associated with 5G networks will continue to drive 6G’s evolution, including 

relevant considerations for AI-Native design in view of potential AI threats and attack strategies that may 

arise as AI itself further evolves over the next several years.  3GPP standards have already begun to 

address the incorporation of AI for the envisioned 6G architecture.   

 

However, 6G network concepts and the envisioned architecture including the use of AI-Native constructs 

are still in their early stages of development.  An overview of the top-three use cases involving AI-Native 

unique to the 6G space, along with an identification of potential threat vectors and vulnerabilities that 

could arise and mitigation strategies that should be considered are provided in Appendix C.  The analysis 

of the relevant 6G network issues using AI/ML were also coordinated with CSRIC IX Working Group 3 

on 5G Security and Reliability as part of a liaison activity and are incorporated to the extent practical in 

the discussion. 

6 Recommendations 
The role of a federal advisory committee is to provide expert guidance on complex technical and policy 

matters.  Throughout this report, CSRIC has described threats posed by AI/ML to the security and 

reliability of communications networks and presented options for industry to promote sound policies and 

practices that support network security and resilience.  We summarize those below and recommend that 

the FCC work in collaboration with federal partners, industry and other stakeholders to develop and 

disseminate best practices to clarify and strengthen how AI is used to support and optimize 

communications networks. 

 

The rapid evolution of AI within telecommunications demands a proactive and comprehensive strategy to 

safeguard networks against emerging threats.  To ensure resilient, secure, and efficient operations, 

operators should consider adopting a zero trust approach, assuming breach and must implement a series 

of targeted mitigating measures that span the full network across the entire network spectrum.  These 

guidelines emphasize robust access controls to restrict unauthorized data access, stringent data protection 

measures, including encryption and integrity safeguards, as appropriate.  Additionally, deploying 

continuous monitoring and anomaly detection systems, enforcing rigorous output testing and validation 

procedures, and conducting periodic model assessments are critical to mitigating risks associated with 

AI-driven functionalities.  Furthermore, support of overload protection mechanisms, the adoption of 

standardized security protocols, and the promotion of AI education and awareness training, all of which 

collectively establish a robust defense against potential vulnerabilities across all technological layers. 

 

Zero Trust Approach 

 

Under a zero trust approach, operators and network vendors should consider maintaining strong access 

control measures across all layers of telecommunications networks, including OSS, RAN, and backhaul, 
to prevent unauthorized access to sensitive data and services.  Specifically, rather than assuming trust 

based on weak assurances like network location, operators and vendors should analyze all aspects of 

access requests, including identity, endpoint, network, and resource and apply threat intelligence and 
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analytics to assess the context of each request.  Additionally, least privileged access ensures that 

permissions are only granted to accomplish specific tasks from the appropriate environment and on 

appropriate devices.  Where appropriate, information that can be connected to subscriber’s identity or 

location.  

 

Monitoring and Anomaly Detection 

 

Deploy continuous monitoring systems across the 5G core, OSS, RAN, and backhaul to identify and 

respond to abnormal behaviors or unexpected traffic patterns.  Advanced anomaly detection mechanisms 

should be used to flag compromised systems (e.g., an ill-behaving NWDAF or misallocation of resources 

by AI models) and alert network operators promptly.  These measures ensure the network's operational 

integrity remains intact. 

 

Output Testing and Validation 

 

Conduct rigorous testing and validation of AI-generated outputs across all network functions, including 

predictive analytics and automation scripts.  Quality assurance protocols, simulated environments, and 

real-world conditions should be utilized to confirm the reliability of AI-driven orchestration and decision-

making processes before deployment. 

 

Periodic AI System and Model Assessments 

 

Continuously reassess AI Systems and AI/ML models, ensuring they adapt to evolving network 

conditions and threats.  This is particularly critical for OSS systems modifying RAN parameters and 

NWDAF predictions.  Retraining models based on updated datasets and reevaluating their model 

accuracy ensures that AI/ML systems operate effectively. 

 

Overload Protection Mechanisms 

 

Introduce safeguards to prevent resource exhaustion due to ill-behaved or compromised network 

functions.  These mechanisms are vital for NWDAF subscriptions and equally important for RAN and 

backhaul resource allocations.  Overload protection ensures that malicious traffic or unexpected surges 

do not disrupt regular network operations. 

 

Access Controls 

 

Maintain strong access control measures across all layers of telecommunications networks, including 

OSS, RAN, and backhaul, to prevent unauthorized access to sensitive data and services.  Access control 

security mechanisms play a vital role in preventing unauthorized access to sensitive data and services 

within the telecommunications industry.  These controls are critical in both development and production 

environments, safeguarding data such as training and test datasets, analytics services, and other network-

related information.  By implementing mutual authentication and authorization protocols, operators 

ensure that only trusted entities can discover, access, and utilize network services and data sources, 

thereby mitigating risks posed by rogue entities.  To maintain consistency and interoperability, operators 

should adopt applicable standardized mechanisms, such as those defined by 3GPP, and enforce these 

access controls across all network components.  Such robust measures help protect both the management 

and operational planes of the network, ensuring secure and reliable functionality throughout. 

 

Data Protection 

 

Adhere to appropriate data protection, integrity and provenance protection measures to safeguard data 

from unauthorized usage and manipulation within the telecommunications industry.  All data, whether 
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stored ("at rest") or being transferred ("in transit"), should be protected to ensure its confidentiality, and 

integrity protection mechanisms should be applied to prevent tampering or unauthorized alterations.  

Data in transit includes critical elements, such as training and test datasets, machine learning models, and 

model parameters, which are exchanged between development and production environments, as well as 

data shared between multiple deployed systems and other network functions within the production 

environment.  Standardized encryption and integrity protection methods, such as those defined by 3GPP, 

should be adopted wherever possible to maintain consistency and secure data across all network 

operations.  Consider double encryption (e.g., encrypting at both the application service layer and the 

platform layer) for especially sensitive data.  These practices provide a robust framework for mitigating 

risks and preserving the reliability and security of telecommunications systems. 

 

Standardized Security Protocols 

 

Adopt applicable security protocols standardized by 3GPP for interoperability.  These protocols can 

address vulnerabilities across NWDAF, OSS systems, and other AI-driven functionalities in RAN and 

backhaul, enhancing resilience against emerging threats. 

 

In particular the adoption of NIST standardized Post Quantum Cryptography (PQC) algorithms and 

standardized security protocols supporting PQC (e.g., TLS, IPsec, etc.) is encouraged.53 

 

Strengthening Supply Chain Security for AI-Enabled Telecommunications 

 

To safeguard the telecommunications supply chain from emerging threats and ensure the responsible 

deployment of AI technologies, the Commission, in coordination with manufacturers and industry 

telecom operators, should collaborate on best practices for rigorous monitoring of the multivendor 

ecosystem, adhering to AI governance policies, and ensuring transparency in component sourcing.  For 

example, as AI integration in UE handsets expands, it is critical to track hardware and software 

provenance through bills of materials (BOMs) that include inventory lists, certifications, and security 

benchmarks.  Beyond BOMs , stakeholders should consider establishing a root-of-trust framework that 

validates the authenticity of AI-enabled devices at multiple levels, reducing exposure to counterfeit 

components, manipulated firmware, or unauthorized access risks.  Implementing secure data pedigree 

tracking will help maintain integrity across the AI lifecycle, ensuring models and datasets adhere to strict 

security and reliability standards.  Collaboration with industry stakeholders must extend to continuous 

risk assessments, vendor audits, and enforcement of secure software supply chain principles, mitigating 

vulnerabilities before they disrupt critical communications infrastructure.  By promoting standardized 

security protocols and proactive coordination, the Commission can reinforce industry resilience against 

AI-related exploitation, ensuring a trusted, transparent, and protected telecommunications ecosystem. 

 

Sharing of Data and Models 

 

CSRIC observed that there are limited real world examples of AI being deployed.  Promoting access to 

training and test data, and sample models for key telecommunications AI use cases to foster a robust 

ecosystem of model providers for telco scenarios.  Standardized interfaces, datasets and schemas will 

help vendors create standardized AI solutions for the telecommunications network, and accelerate 

operators’ ability to evaluate, contrast, and securely deploy AI systems. 

 

AI Education 

 

Promoting comprehensive AI education and awareness training, especially related to the use of AI in 

 
53 See, e.g., NIST, Status Report on the Fourth Round of the NIST Post-Quantum Cryptography Standardization 

Process, Mar. 2025, https://csrc.nist.gov/pubs/ir/8545/final. 
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telecommunications.  Training should include considerations for evaluating and adopting AI-based 

technologies in a secure and responsible manner.  Appendix A contains a good list of resources as a 

starting point, and a forthcoming report from CSRIC will address “Recommended Best Practices for the 

FCC and Industry on the Ethical and Practical Use of Artificial Intelligence/Machine Learning.”  

7 Conclusions 
The integration of AI into telecommunications networks presents both unprecedented opportunities and 

serious security challenges.  Rapid AI adoption introduces complex risks that demand proactive 

mitigation.  To ensure the reliability and integrity of AI-powered networks, industry stakeholders must 

implement stringent safeguards, including robust risk assessment protocols, continuous monitoring 

systems, and reinforced data protection measures.  Industry’s commitment to standardized security 

frameworks and ongoing consumer education will be crucial in protecting against adversarial interference 

and operational vulnerabilities.  At the same time, the Commission has a vital role in encouraging best 

practices, ensuring AI implementations align with security requirements, and promoting policies that 

safeguard both industry and public interests.  As network operators ramp up AI use in 5G networks and 

prepare for the design and deployment of 6G networks, continued collaboration between industry and the 

Commission will be essential.   
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Appendix A: Overview of Key Frameworks for Understanding 

Threats and Risk Mitigation in AI Systems 
 

▪ Based on the notions of security, resilience, and robustness of ML systems from the National 

Institute of Standards and Technology (NIST) AI Risk Management Framework,54 NIST further 

developed a taxonomy for adversarial machine learning (AML) risk assessment.  They considered the 

following five dimensions: (i) AI system type (Predictive or Generative AI), (ii) stage of the ML 

lifecycle process when the attack is mounted, (iii) attacker goals and objectives, (iv) attacker 

capabilities, and (v) attacker knowledge of the learning process and the AI system.55  Using these 

attributes, they provide a detailed taxonomy for adversarial machine learning attacks and potential 

remedies. 

 

▪ Open Worldwide Application Security Project (OWASP), a nonprofit foundation that works to 

improve security of software, 2023 release of Top Ten Machine Learning Security issues in ML 

systems.56  In 2025, OWASP updated the list specifically targeting the development and deployment 

of Large Language Models.57  Similar to their work on cybersecurity, OWASP identifies potential 

vulnerabilities at a very detailed level with examples of attack scenarios and mitigation strategies.  

 

▪ MITRE’s ATLAS Matrix provides a matrix of tactics, techniques, mitigations and case studies for 

various AI related attacks.58   

 

▪ MIT AI Risk Repository is a massive compendium of AI risk-related papers in the academic 

literature.59  It has three parts: 

 

o A Database with 1000+ risks extracted from 56 existing frameworks and classifications of AI 

risks.  

o A Causal Taxonomy that relates how, when, and why these risks occur.  

o A Domain Taxonomy classifies these risks into 7 domains (e.g., “Misinformation”) and 23 

subdomains (e.g., “False or misleading information”) 

 

▪ IBM AI Risk Atlas provides a framework for understanding the broad range of risks underlying the 

use of LLMs in the enterprise.60  It covers both predictive and generative AI applications. Risks 

capture three distinct aspects: (i) Model Inputs during training (e.g. biases in the training data) or 

during use (e.g., sensitive data given during prompt engineering), (ii) Model Outputs (e.g., 

hallucination) and (iii) other considerations (e.g., legal).  IBM’s risk framework also includes three 

 
54 NIST. NIST AI Risk Management Framework, https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf. 
55 A. Vassilev, et al., Adversarial Machine Learning: A Taxonomy and Terminology of Attacks and Mitigations, 

NIST Trustworthy and Responsible AI NIST AI 100-2e2023, https://doi.org/10.6028/NIST.AI.100-2e2023.  
56 OWASP Machine Learning Security Top 10, 2023, https://owasp.org/www-project-machine-learning-security-

top-10/.  
57 Id.    
58 MITRE, ATLAS Matrix, https://atlas.mitre.org/matrices/ATLAS. 
59 MIT, AI Risk Repository, https://airisk.mit.edu/. 
60 IBM, AI Risk Atlas, Feb. 7, 2025, https://www.ibm.com/docs/en/watsonx/saas?topic=ai-risk-atlas.  

https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf
https://doi.org/10.6028/NIST.AI.100-2e2023
https://owasp.org/www-project-machine-learning-security-top-10/
https://owasp.org/www-project-machine-learning-security-top-10/
https://atlas.mitre.org/matrices/ATLAS
https://airisk.mit.edu/
https://www.ibm.com/docs/en/watsonx/saas?topic=ai-risk-atlas
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indicators to capture the origin of the risk: (1) Traditional - known risk from prior or earlier forms of 

AI systems; (2) Amplified - known risk but now intensified because of intrinsic characteristics of 

LLMs, most notably their inherent generative capabilities; and (3) New - emerging risk intrinsic to 

LLMs and their generative capabilities.  

 

▪ Organization for Economic Cooperation and Development (OECD) created the AI Risk Ontology 

(AIRO) “for expressing risk of AI systems based on the requirements of the AI Act, ISO/IEC 23894 

on AI risk management and ISO 31000 series of standards.  AIRO assists stakeholders in 

determining "high-risk" AI systems, maintaining and documenting risk information, performing 

impact assessments, and achieving conformity with AI regulations.”61 

 

  

 
61 OECD, AI Risk Ontology, Dec. 5, 2024, https://delaramglp.github.io/airo/.   

https://delaramglp.github.io/airo/
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Appendix B: Generic Threats & Mitigations to the AI Lifecycle 
 
AI Lifecycle Training Phase: Threats & Mitigations 

 

The training phase of AI/ML models is particularly critical, as it lays the foundation for their 

functionality and accuracy.  However, this phase is vulnerable to various security threats, such as data 

poisoning attacks, where adversaries introduce malicious data to compromise the model's performance.  

Similarly, the testing phase faces risks like evasion attacks, where manipulated input data is used to 

deceive the model.  Addressing these threats requires a multi-layered approach, including robust access 

controls, encryption, continuous monitoring, and auditing processes.  By incorporating these measures, 

organizations can enhance the security and resilience of AI/ML systems throughout their lifecycle. 

 

 

 
 

Figure 7 – AI/ML Training Phase Threats and Mitigations 

 Source: Nokia 

 
As seen in Figure 7, in the context of machine learning, collecting training data presents the risk of a data 

poisoning attack.  A data poisoning attack involves an adversary injecting deceptive or malicious data 

into the training dataset, which can degrade the model's performance or lead it to make incorrect 

decisions.  To mitigate this threat, implementing access control measures is crucial.  Access control 

ensures that only authorized personnel can modify or contribute to the training dataset.  This involves 

authentication mechanisms such as multi-factor authentication (MFA), which requires multiple methods 

of verifying a user's identity, and role-based access control (RBAC), which grants permissions based on a 

user's role within the organization. 
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When it comes to maintaining test data, the primary security concern is an evasion attack. During an 

evasion attack, an adversary manipulates input data to deceive the model into making incorrect 

predictions.  To protect against this, anomaly detection systems should be employed. Anomaly detection 

algorithms monitor the input data for unusual patterns or behaviors that could signify an attack.  

Additionally, continuous monitoring and auditing of the test data are essential.  Continuous monitoring 

involves regularly checking the data for signs of tampering or manipulation, while audits are systematic 

reviews of data and processes to ensure compliance with security standards and identify potential security 

gaps. 

 

In the phase of training and testing the machine learning model, other threats include unauthorized 

access, tampering, and eavesdropping.  Unauthorized access refers to an individual gaining access to the 

system without permission, while tampering involves altering the data or models to cause incorrect 

functioning.  Eavesdropping is an unauthorized interception of and listening to a data transmission.  To 

mitigate these threats, integrity and encryption protection, both data at rest and in transit, must be 

implemented.  Encryption ensures that data is encoded and only accessible to those with the proper 

decryption key, protecting it from unauthorized access during transmission or storage.  Integrity checks 

involve verifying that data has not been altered, maintaining the trustworthiness and accuracy of the data 

and model. 

 

Once the model is pre-trained, it remains vulnerable to unauthorized access, tampering, and 

eavesdropping. Securing a pre-trained model using encryption can secure it from unauthorized access and 

alterations.  Moreover, continuous monitoring and auditing remain essential to detect any attempts at 

tampering or unauthorized access promptly. 

 

Lastly, the pre-trained model is also susceptible to model poisoning attacks, where adversaries introduce 

vulnerabilities during the training process.  To mitigate this, strict access control must be enforced, 

ensuring only authorized personnel can modify or access the model.  Additionally, continuous 

monitoring and auditing, along with integrity and encryption protection, ensure the model remains secure 

and any unauthorized changes are promptly identified and addressed.  Adversarial training can be used 

when training the model in which the model is trained on adversarial examples to make the model more 

robust against evasion attacks,  

 

AI Lifecycle Inference Phase: Threats & Mitigations 

 

The inference phase in AI/ML systems is a critical stage where input data and model outputs must be 

safeguarded against potential security threats.  This phase is particularly susceptible to risks such as 

unauthorized access, tampering, and prompt injection attacks, which can compromise the integrity and 

reliability of the system.  To address these vulnerabilities, implementing robust access control 

mechanisms, integrity checks, and encryption protocols becomes essential.  Additionally, continuous 

monitoring and auditing play a pivotal role in detecting unusual activities or anomalies in real-time.  By 

fostering a culture of AI/ML security awareness and education among all personnel, organizations can 

effectively mitigate these threats and ensure the safe and reliable operation of AI/ML systems during 

inference. 

 



The Communications Security, Reliability and Interoperability Council IX    

Threats Posed by Artificial Intelligence/Machine Learning Systems 

June 2025 

 

Page 50 of 58 

 
 

Figure 8 – AI/ML Inference Phase Threats and Mitigations 

 Source: Nokia 

 
As seen in Figure 8, during the inference phase, input data is susceptible to unauthorized access, 

tampering, and prompt injection attacks.  Unauthorized access refers to individuals gaining access to the 

system without proper authorization, which can compromise the integrity and confidentiality of the input 

data.  Tampering involves the manipulation of input data, leading to incorrect model predictions or 

outputs.  Prompt injection is a threat where malicious prompts or inputs are injected to influence the 

model's responses.  In addition, a malicious adversary could attempt to steal the model or reverse 

engineer the functionality of the model through model extraction and model inversion attacks.  In a 

model extraction attack, a model is stolen, and in a model inversion attack, through querying the model, 

an adversary is able to gain insight and information into the inner workings of the model.  

 

To mitigate these threats, several security measures should be put in place.  Access control is crucial to 

ensure that only authorized users can access and change the input data, which can be achieved through 

multi-factor authentication (MFA) and role-based access control (RBAC).  Data sanitization techniques 

help in cleaning and validating input data to remove any malicious or corrupt entries.  Integrity and 

encryption protection safeguard the data by encoding it and checking for unauthorized modifications.  

Input data validation involves verifying the input data to ensure its accuracy and authenticity.  Anomaly 

detection mechanisms can be put in place by the consumer using another AI algorithm to detect any 

anomalies from the model output.  Differential privacy techniques can also be used to protect the model 

output to avoid model inversion or model extraction attacks.  Finally, continuous monitoring and auditing 

are essential to detect any unusual activities or anomalies in the input data, allowing for swift detection 

and response to potential threats. 

 

The pre-trained model and its output also face risks such as unauthorized access and tampering.  To 

address these, access control measures should be enforced to restrict access to the trained model and its 
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outputs to authorized personnel only.  Integrity and encryption protection ensures that both the trained 

model and its outputs are secure from unauthorized alterations and eavesdropping.  Additionally, 

continuous monitoring and auditing help in identifying and addressing any unauthorized access attempts 

or modifications, maintaining the integrity of the model and its outputs. 

 

One specific threat to the model output is the execution of malicious code, known as malicious model 

outputs.  This threat involves manipulating the model outputs to include malicious code that can harm 

end-users or systems.  To mitigate this risk, access control is necessary to ensure that only authorized 

individuals can modify or access the model outputs.  Integrity and encryption protection secure the 

outputs by encoding them and maintaining their integrity, preventing unauthorized modifications.  

Continuous monitoring and auditing help detect and address any attempts to manipulate the model 

outputs. 

 

Lastly, the consumer of the model’s output is also exposed to risks like unauthorized access. Access 

control measures should be in place to ensure that only authorized consumers can access the model 

outputs.  Integrity and encryption protection safeguard the outputs, ensuring they remain secure and 

unaltered during transmission and storage.  

 

By implementing these comprehensive security measures, the model remains secure and reliable, 

protecting against various threats during the inference phase.  Throughout all these phases, emphasizing 

AI/ML education and security awareness training for all personnel involved is crucial.  This helps create 

a culture of security, ensuring that everyone is aware of the importance of maintaining data integrity and 

protecting against threats.  Regularly updating this training keeps team members informed about the 

latest security threats and best practices for mitigating them. 
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Appendix C: AI Use in 6G Network Technology 
 
AI capabilities for training and inference have already been defined for a few specific network entities 

such as the NWDAF in the Core Network, which analyzes data to improve network performance and user 

experience.  A similar but expanded concept is envisioned for 6G systems.  To offer a baseline, as 

depicted in Figure 9, the insertion of the AI and NF component (Figure 9b) is aimed at supporting 

MLOps performance.  The equivalent NWDAF and supporting functions in 6G will be the central target 

of AI threat-attack-mitigation strategies.  Figure 9 further depicts the extended AI-Native functionality 

anticipated in 6G.  The implication is that, rather than strictly limiting AI to a few network entities, such 

as the NWDAF, operators will leverage AI use throughout the network in various network entities across 

multiple domains (e.g., RAN, Core, and Operations blocks).  In addition, operators will most likely 

support some level of AI capabilities in all network entities are anticipated to optionally support some 

level of AI capabilities; for example, training and/or inference, to support ISAC, holographic 

communications, and digital twin functionalities and utilities. 
 

 
 

Figure 9 -- (a) Past , (b) present AI capability evolutions in 5G & 5G Advanced,  

and (c) AI capability evolution in 6G  

Source: Nokia 

 
Use Cases. AI will advance virtualization in 6G by extending software-defined networking to additional 

network elements, including radio units and antennas, and enable AI-driven optimization of radio 

hardware to enhance spectrum efficiency, reduce energy consumption via adaptive power control and 

real-time resource allocation, and help with cost reduction.  A representative subset of high-priority use 

cases for 6G networks using AI technologies includes Integrated Sensing and Communications (ISAC), 

Holographic Communications, and Digital Twins. 

 

▪ Integrated Sensing and Communications. ISAC is a technology that combines wireless 

communication and sensing capabilities into a unified system, allowing networks to transmit data 

while simultaneously detecting and analyzing the surrounding environment.  6G ISAC will 

merge RF sensing and wireless communication for dynamic spectrum access, object detection, 

and environmental awareness.  However, ISAC introduces new attack vectors, including RF 

spoofing, adversarial perturbations, and sensor data poisoning, which can compromise AI-driven 

decision-making.  Tight security protocols will be essential to protect sensitive information and 

maintain the integrity of both the sensing and communication functions within 6G networks.   

 

As we push further into 6G, we see more AI incorporated into the physical layer, bringing data 
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closer to the user.  As the shift grows from network-centric data towards AI-driven SONs and 

localized AI frameworks for autonomous spectrum management and real-time analysis, as shown 

below in Figure 10, it brings with it the need for stronger security and privacy measures at the 

user level.  While data at higher layers may be more structured and tolerate higher processing 

delays, the raw, fine-grained data processed closer to the user demands heightened scrutiny.  

Ensuring that security considerations are as robust if not more so than in the core, will be critical 

as the transition toward AI-Native networks in 6G takes place. 
 

 
 

Figure 10 -- AI Across the Network Stack. 

Source: Ericsson 

 
▪ Holographic Communications.  Holographic communication is an advanced technology that 

enables real-time, immersive 3D interactions, allowing people to communicate as if they were 

physically present in the same space.  6G networks will integrate AI and advanced 

communication technologies to enable hyperconnectivity and immersive experiences by bringing 

over-the-air data closer to the user.  These networks will leverage millimeter-wave (mmWave) 

and terahertz (THz) spectrum to achieve ultra-high data rates and low latency.  In the envisioned 

AI-Native 6G design, AI will be embedded directly into networking equipment from design 

inception.  AI will play a crucial role in designing the 6G air interface, optimizing waveform 

generation, beamforming, and dynamic spectrum allocation to provide for an overall enhanced 

user experience.  In addition to enabling autonomous 6G networks to optimize themselves in 

real-time -- enhancing performance, reliability, and energy efficiency, and facilitating predictive 

maintenance and intelligent resource allocation -- AI will set the stage for a highly adaptive 

communication ecosystem to provide for personalized user experiences.  Some advanced forms 

of Generative AI, deep/reinforcement learning, or other AI variations will likely be used in 6G 

networks for this purpose and are yet to be defined.  This creates an opportunity for adversarial 

breaches using AI data poisoning methods to confound/disrupt the user experience.  This will 

also require addressing guardrails for self-learning processes in diverse environmental 

applications or scenarios. 

 

▪ Digital Twins.  Digital twins refers to virtual replicas of physical network components, systems, 

or environments that enable real-time simulation, analysis, and optimization.  These digital 

models allow operators to predict network behavior, test configurations, and enhance 

https://www.sciencedirect.com/science/article/pii/S2405959522000741
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performance without disrupting live systems.  6G networks will enhance the use of digital twins 

as part of an emulation and “hardware-in-the-loop” environment by enabling real-time, AI-driven 

simulations of physical systems.  Improved connectivity, sensing capabilities, and massive data 

collection will allow more accurate predictions and optimization across industries, including 

smart cities, industrial automation, and healthcare.  This will be possible due to 6G networks’ 

enhanced connectivity, stronger sensing capability, and capacity to collect massive amounts of 

data.  The new functionality that AI will introduce includes communication plus sensing, 

communication plus computing, and communication plus autonomy through AI-enabled support 

for ISAC elements.  Generative AI, deep reinforcement learning, and LLMs will be used in 

concert to ingest, reason and infer upon large data sets to compare ideal operation and 

functionalities (through a set of predefined metrics) via simulation and comparing to in situ real-

time network performance to make any necessary adjustments to optimize operations.  This same 

methodology can be used to detect both AI- and non-AI-induced anomalies and take adaptive 

corrective actions. 

 

Digital twins can be used to train network entities to collaborate, meaning that information could 

be shared among them by leveraging AI capabilities.  For example, one network entity could 

request another network entity to train a model on its behalf (cross-training), or a network entity 

could act as a data producer for another network entity that trains a model and so on.  AI is also 

expected to be leveraged in a more distributed way with multiple network entities collaborating 

locally and centrally.  For example, Federated Learning (FL) could be enhanced in 6G where 

distributed network entities locally train a model using local data sources.  Local digital twin 

models are subsequently aggregated by a central network entity for iterative or cyclical improved 

learning. 

 

Risks Associated with AI in 6G Networks 

 

Failures in 6G AI design and implementation could give rise to vulnerabilities downstream of 

deployment, without sufficiently exercising steps early on to preclude deficiencies.  Additionally, attacks 

targeting 6G AI-Native systems are flagged, including attacks using AI that may be reasonably 

anticipated along with mitigation measures that should be considered to limit vulnerabilities.  

Virtually everything we know about cyber threats and attack strategies in the context of 5G systems will 

apply also to 6G networks, but there remain unknowns.  While not intending to “over signal” with 

respect to the expected severity of looming AI-based threat-attack scenarios for 6G, the current 

immaturity of 6G technologies and the uncertainties associated with the specific nature of future AI 

threats are significant concerns.  The focus of this section is on the relevant AI considerations in the 

context of high-priority use cases relevant to 6G evolution and deployment. 

The 6G AI-Native architecture will enable intent-based networking, autonomous Medium Access Control 

scheduling, and predictive analytics for proactive fault management.  However, as AI integrates deeper 

into network control and orchestration, security challenges such as adversarial AI, data poisoning, and 

model inversion attacks must be addressed to ensure network resilience. 

Further, advancements in FL and integrated cloud services will also be pivotal in 6G, allowing networks 

to train AI models on distributed edge data while preserving privacy.  Integrated into NWDAF, FL 

enables real-time adaptation without exposing raw data.  However, FL models are vulnerable to gradient 

inversion attacks, model poisoning, and adversarial updates.  To mitigate these risks, secure aggregation, 

homomorphic encryption, and differential privacy mechanisms should be integrated as appropriate in 

order to safeguard model integrity. 

 

Possible types of risks and mitigation responses across the 6G network stack based on the use cases of 

concern include: 

 

https://asia-exstatic-vivofs.vivo.com/PSee2l50xoirPK7y/1696924848589/a123c45c2640fe70399b5fda79a9b435.pdf
https://asia-exstatic-vivofs.vivo.com/PSee2l50xoirPK7y/1696924775057/b2a3c6624458fc5c02e4f6525bbfd611.pdf
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▪ Adversarial breaches using AI data poisoning methods to confound/disrupt user experience. 

 

▪ Introducing bad actor AI agents via the multivendor ecosystem that disrupts normal functions and 

desired operation or produces undesired decisions and unintended outcomes. 

 

▪ Model evasion attacks. 

 

▪ Model exfiltration (e.g., extract energy efficiency optimization models). 

 

▪ Real time data manipulation generates false reports. 

 

▪ Configuration attacks on network settings. 

 

AI vs. AI competing strategies where different AI systems or AI-driven approaches are pitted against 

each other either in direct competition or as part of a broader strategic challenge, may deplete network 

resources, causing desired attention mechanisms to stray. 
 

Table 9 provides a high-level summary of a threat model/risk analysis for how use of AI can affect the 

6G network communications profile and performance for the three main use cases cited. 

 

Risk Category/ 

Use Case 
ISAC 

Holographic 

Communications 
Digital Twins 

AI Attacks 
Deep reinforcement 

learning leveraging AI-

assisted pattern of behavior 

models are leveraged to 

enhance/automate remote 

cyber-physical attacks 

(replays, MITM, 

DOS/DDOS, spoofing or 

impersonation, etc.) on 

critical communications 

infrastructure to infiltrate 

the internal network, 

exfiltrate data, and gain 

network control. 

Common AI-driven threats 

include automated 

vulnerability exploitation 

(where AI identifies and 

exploits security gaps at 

scale) for phishing or 

misinformation campaigns, 

and AI-powered 

reconnaissance (where ML 

models analyze network 
behavior to detect 

vulnerabilities before 

launching attacks). 

Generative AI can be 

leveraged to enhance and 

automate cyber-physical 

attacks on critical 

communications interfaces 

negatively affecting user 

experience or forcing bad 

data-to-decisions processes 

that confound users and 

operators. 

Common AI-driven threats 

include deepfake-assisted 

social engineering 

(creating hyper-realistic 

impersonations for 

phishing or misinformation 

campaigns), and AI-

powered reconnaissance 

that exploits patterns of 

behavior. 

Generative AI and 

deep reinforcement 

learning mechanisms 

can be used to 

confound or poison 

digital models and 

indirectly impact real-

time network operation 

or functionalities. 

Common AI-driven 

threats include 

automated 

vulnerability 

exploitation through 

learning data 

corruption that can 

further exploit security 

gaps at scale in real 

networks, including 

imposter or deepfake-

assisted social 

engineering, as well as 

AI-powered 

reconnaissance using 
ML to analyze network 

behavior to detect 

vulnerabilities before 
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Risk Category/ 

Use Case 
ISAC 

Holographic 

Communications 
Digital Twins 

launching attacks. 

Attacks 

Targeting AI-

Native Systems 

Both AI- and non-AI-

enabled attacks further 

assisted by pattern of 

behavior models can be 

used to target critical AI-

Native communications 

infrastructure and exploit 

vulnerabilities to 

enhance/automate remote 
cyber-physical attacks 

(replays, MITM, 

DOS/DDOS, spoofing or 

impersonation, etc.) to 

infiltrate the internal 

network, exfiltrate data, 

and gain network control. 

Both Generative AI- and 

non-AI-enabled attacks 

further assisted by pattern 

of behavior models can be 

used to enhance and 

automate cyber-physical 

attacks on critical 

communications interfaces 

negatively affecting user 
experience or forcing bad 

data-to-decisions processes 

that can be used to 

confound users/operators. 

Model evasion attacks, 

including adversarial 

inputs deceiving AI 

classifiers, data poisoning 

(attackers injecting 

malicious samples to 

degrade model 

performance), and model 

inversion attacks 

(adversaries reconstructing 

sensitive training data from 

exposed AI models). 

Backdoor attacks can 

introduce hidden behaviors 

into AI systems, making 

them vulnerable to targeted 

exploitation. 

Barrage and replay attacks 

can be automated to 

overmatch AI-Native 

functions to the point 

where vulnerabilities are 

detected to exploit models 

for use cases that are 

insufficiently trained. 

Both Generative AI- 

and non-AI-enabled 

attacks can be used to 

poison training data 

and telemetry data 

collected for recursive 

digital twin model 

improvements that may 

further affect real 6G 
network system 

operation causing 

cascading or 

precipitous network 

degradation. 

Adversarial inputs used 

to deceive AI 

classifiers, including 

data poisoning and 

model inversion attacks 

(adversaries 

reconstructing sensitive 

training data from 

exposed AI simulation 

models). 

AI-Native 

Design/ 

Implementation 

Failures 

Insufficient use cases and 

corresponding training 

models are used to develop 

AI-Native constructs 

across critical 6G 

communications 

Use cases and 

corresponding training 

models are insufficient in 

AI-Native design to 

account for potential AI- 

and non-AI cyber-attack 

Non-vetted or 

corrupted training data 

are used to train first- 

or subsequent-

generation digital 

models used in 
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Risk Category/ 

Use Case 
ISAC 

Holographic 

Communications 
Digital Twins 

infrastructure network 

segments. 

Deficiencies or 

inadequacies in the 

planning, structure, 

implementation, execution, 

or maintenance of AI-

Native tools or system 

leading to malfunctions or 

other unintended 

consequences that affect 

critical communications 

infrastructure operations. 

Failures in AI design and 

implementation can lead to 

unintended disruptions in 

critical communications 

infrastructure where such 

failure modes include 

Autonomy Risk, 

Brittleness, Fracture, and 

Inscrutability. 

Applying unvetted or 

source-corrupted training 

data. 

vectors and attack surfaces 

used in developing AI-

Native constructs across 

critical 6G 

communications 

infrastructure, including 

over-the-air/user 

interfaces. 

Deficiencies or 

inadequacies in the 

planning, structure, 

implementation, execution, 

or maintenance of critical 

communications 

infrastructure at/near user 

interfaces. 

Using unvetted or source-

corrupted training data. 

emulation systems 

intended to optimize 

6G network 

performance. 

Deficiencies or 

inadequacies in the 

planning, structure, 

implementation, 

execution, or 

maintenance of AI 

simulation training data 

and/or AI-Native tools 

or system leading to 

malfunctions or other 

unintended 

consequences that 

affect critical 

communications 

infrastructure 

operations. 

Using unvetted or 

source-corrupted 

training data. 

 

Table 9 - Threat Model/Risk Analysis Categories vs. 6G Network Use Cases 

 

Considerations for 6G 

 
The considerations below are tempered by the uncertainties in the 6G network concept designs and the 

envisioned level of AI use for the selected scenarios.  By the time 6G is deployed, AI-Native will be 

pervasive in its architectural design, and external network threats will have evolved to a level of 

sophistication where some forms of advanced AI attacks will likely be used.  The following are suggested 

for further consideration in the context of the intended use of AI in 6G networks to ensure operational 

efficiency, security, and resiliency for the above use cases as first steps in thwarting downstream AI-

powered and non-AI cyber threats: 

 

▪ Adaptive AI Anomaly Detection  

 

▪ Adapting Adversarial Machine Learning (AML) mechanisms 

 

▪ Radio Frequency Machine Learning Operations (RFMLOps) approaches: 

 

o Consider applying optimized-AI based multi-objective optimization for threat 

detection/classification. 

o Consider incorporating a unified, multitask learning framework to analyze and classify 

external threats in real-time based on current RFMLOps research and development 
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specifically for this purpose applied to 6G networks. 

o Examine the role of open-source generative adversarial networks (GANs) for 

unsupervised synthesis of raw-waveform audio, as opposed to image-like spectrograms.  

These ML algorithms learn to synthesize raw waveform audio by analyzing numerous 

examples of real audio and can be extended to handle raw RF within an RFMLOps 

framework.  The use of such open-source tools can support AI design, enhance security 

by mitigating inherent AI vulnerabilities, and strengthen defenses against AI-based 

external threats. 

 

▪ Distributed AI-Native design for data protection (validating training data sources), model 

security (periodic retraining), operational controls (semi-autonomous parameter limiting on 

rate/power), and architectural guardrails on hierarchy of functions, local validation, and failover 

mechanisms. 

 

▪ Leverage ML systems for discerning authorized from unauthorized network users and preventing 

unauthorized access. 

 

▪ Examine the use of AI-enabled dynamic spectrum evasion techniques to further mitigate 

spectrum exploits. 

 

▪ Research supervised learning for signal traffic classification or unsupervised methods for 

identifying novel anomalies, including AI-spectrum management solutions designed for access 

denial 

 

▪ Consider incorporating AI techniques with post-quantum security designs and use predictive AI 

techniques to execute proactive defenses, including against threats that may be AI-based (i.e., 

build in “anticipatory” AI-based features in the 6G AI-Native design to predict threat vectors and 

attack strategies).  In particular, consulting existing literature on preparing 5G for post-quantum 

security may be useful.62 

 

▪ Consider use of cloud-native architectures requiring zero trust models, secure API gateways, and 

hardware root-of-trust mechanisms to mitigate threats arising from virtualization and 

containerized deployments to address supply chain risks, potential for backdoor vulnerabilities, 

and configuration drift across diverse components. 

 
62 See ATIS, Preparing 5G for the Quantum Era: An Analysis of 3GPP Architecture and the Transition to 

Quantum-Resistant Cryptography, 2025, https://atis.org/resources/preparing-5g-for-the-quantum-era-an-analysis-

of-3gpp-architecture-and-the-transition-to-quantum-resistant-cryptography/ (describing a phased cryptographic 

migration strategy within the 5G network architecture). 
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