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Abstract—In the last few years, synthetic voices have become
incredibly realistic and more difficult to distinguish from
authentic, human voices. Although impressive, these advances
raise security concerns, increasing the need for models that can
discriminate between human and synthetic voices under real-
world conditions. While previous work has proposed datasets
and models that provide convincing results for high-quality
recordings, very few studies have examined the efficacy of
models under diverse conditions - both speaker and channel
variations. Thus, it is unclear how well these models generalize
to novel, less pristine channel conditions. In this paper, we
present a novel dataset for testing the performance of such
models under noisy conditions associated with the cellular
telephone network. We improve upon previous methods by
including a variety of synthesizers as well as languages. Finally,
we demonstrate that a model trained on this dataset can achieve
high accuracy on novel telephony data without any degradation
in accuracy on non-telephonic audio.

Index Terms—speech recognition, speaker recognition, auto-
matic speech recognition, telephony, biometric authentication

I. INTRODUCTION

The ability to create synthetic voices that can imitate an

individual’s voice has dramatically improved such that many

of these synthetic voices are difficult to distinguish from the

human voice that they imitate. The inability to discriminate

synthetic voices from human voices is of great concern for

many reasons. For example, synthetic voice clones can be

used for deception and to spread misinformation using the

familiar voice of an authority figure or political leader. When

conducting business through the telephone (phone banking,

for instance), it can be used to steal one’s identity, or access

bank accounts by impersonating the real user’s voice in

an interactive voice response setting. For example, recently

thieves imitated a company executive’s voice in order to steal

hundreds of thousands of dollars.1

Thus, in this paper we present our work on detecting such

voice spoofs in telephony speech. Our specific contributions

are as follows:

• We create a telephony dataset that captures diverse

channel conditions associated with cellular networks.

1https://www.scmp.com/print/news/world/article/3025772/
ai-first-voice-mimicking-software-used-major-heist.

We will provide this dataset and the corresponding code

to the research community.2

• We present a novel approach to create high-quality

synthetic telephony data.

• We train a model that exhibits high accuracy in discrim-

inating real human voices from synthetic voices in both

clear and telephony speech, even when encountering

out-of-distribution synthetic samples created by high

end commercial synthetic voice generation tools.

• We apply transfer learning by re-purposing a high-

performance speaker embedding model for liveness

detection, showcasing the adaptability of speaker rep-

resentations to spoof detection tasks.

• We demonstrate the viability of a lesser-known fine-

tuning approach of freezing the output layer and fine-

tuning once to mitigate catastrophic forgetting.

The rest of this paper is structured as follows: Section II

positions our work in context with the current literature on

anti-spoofing, Section III outlines our datasets and method-

ology including a comprehensive account of the process

we used to introduce cellular network characteristics in the

datasets. We discuss our proposed changes to the NVIDIA

NeMo pre-trained TitaNet speaker recognition model [1] to

allow it to discriminate synthetic voices from live speakers.

We present the results of our work and subsequent discus-

sions in Section V, and we conclude in Section VI.

II. RELATED WORK

In the last few years, deep learning methods have advanced

rapidly, enabling text-to-speech models to achieve incredible

results [2]. Among these models, data-driven techniques have

resulted in text-to-speech and voice conversion models that

are extremely realistic. Data-driven voice synthesis models,

as their name suggests, learn the structure of the waveforms

from data. For example, Wavenet [3] uses a generative model

that produces speech by estimating the probability of the raw

waveform (conditioned on all the previous waveforms). This

approach has achieved state-of-the-art performance.

Voice cloning in text-to-speech as well as voice-conversion

both work by learning about not only the acoustics of the

2Available at: https://github.com/vail-systems/IEEE-RTC-2025.



language they’re being trained on, but also by learning how

to encode speaker-embeddings. These embeddings capture

various characteristics of the speaker, such as their speech

rate or accent [4]. These speaker-embeddings can be learned

from only a few samples of audio [4], sometimes as little

as a few seconds of speech. By combining the speaker

embeddings with any given text, an audio can be created

making that ‘person’ say anything. The naturalness of these

models combined with how little audio they require has these

models suitable for abuse, with applications in identity theft

and misinformation campaigns.

As a consequence of these advancements, there has been

an increasing concern of spoofing attacks. Spoofing attacks

are attempts to trick a system into granting an unauthorized

user access. These attacks can take the form of several

different forms, such as impersonation, synthetic speech,

voice conversion, or replay attacks [5]. In the present study

we focus on a specific case of anti-spoofing, liveness de-

tection. In liveness detection, unlike other voice biometric

systems such as automatic speaker verification, the system

is only concerned with detecting whether the speech is

being generated from a live speaker or whether it has been

synthesized. For example, in an ideal world, the liveness

detection model would perfectly verify that the audio is

human-generated, and would flag any synthetic speech.

There have been several attempts to create datasets to train

and test liveness detection models [6, 7, 8] along with novel

models to detect spoofed voices [9, 10, 11, 12]. For example,

the Multi-Language Audio Anti-Spoof Dataset (MLAAD) is

a diverse dataset that contains data from 59 different text-to-

speech models in 23 languages. However, a crucial limitation

is that these recordings are all clean and relatively noise

free. For these datasets to be useful in a real-world setting, a

model must be able to achieve high performance in a noisier

environment and across diverse channel conditions.

Previous work has looked at how some properties of

speech affect liveness detection models’ ability to correctly

identify the speech as being human or not. For example, [13]

examined how silence in the audio files affects a model’s

performance on liveness detection. They found that equal

error rates (EERs) increase significantly when silence is

removed from the samples. In other words, by concatenating

silence to the beginning of an audio sample, one could fool

a liveness detection model. They argued that this is because

TTS algorithms generate speech with a lower proportion of

silence compared to human speech.

Additionally, [12] examined whether a classification model

could achieve high accuracy in detecting a replay attack

(previously recorded audio of a human being played back

into a microphone). In order to test their classification model,

they instructed participants to speak aloud various commands

into a cellphone and recorded them. The recordings were

made in an open lab environment such that there was an

element of noise present in the recordings. They found that

their classification model was able to perform well on this

dataset. However, while their dataset was recorded using a

cellphone microphone, there are key properties of telephonic

speech outside of just the microphone. For example, the

carrier, location, and amount of network traffic can all have

an effect on the quality of the audio as its transmitted across

a network.

Similarly, there have been previous attempts to create

datasets comprised of telephony speech [8, 9]. For example,

[8] introduced the telephony dataset, Phonespoof. Their ap-

proach consisted of replaying synthetic voices on a computer

and transferring it to a mobile phone using a 3Jack-4Jack

cable. While it was transferred, the mobile phone called into

one of two software: Smart Logger II or Smart Caller and

this call was recorded. Variability in the recording conditions

was introduced by using two different mobile phones and

two different telecommunications operators. However, this

dataset no longer reflects the current ecosystem. Specifically,

the data set is limited in language diversity, having examined

only English and Russian, and contains recordings obtained

by using products that no longer exist to capture calls. It

is not clear what effect these capture methods have on the

quality of the audio. Finally, rather than capturing the audio

with the cellphone microphones, they use a phone jack to

directly feed audio into the phone. This creates a distinct

audio characteristic that is only one of many possible ways

for an attacker to bypass security measures.

Additionally, [9] examined the vulnerability of speaker

verification systems against voice conversion attacks. They

examined the performance of models ranging from simple

Gaussian mixture models (GMMs) to a joint factor analysis

(JFA) recognizer. Their results suggested that these systems

are vulnerable to spoofing attacks, especially in telephonic

speech (speech transmitted through a telephone or cellular

network). However, since the paper’s publication, there have

been breakthroughs in both speaker-recognition models as

well as text-to-speech (TTS) models. Thus, it is unclear

whether these vulnerabilities remain.

More recently, [14] also examined the ability of a model to

identify whether a voice is authentic or not. While they did

not explicitly examine telephony speech, they did examine

the effects of channel conditions. Specifically, the generated

voice clones of speech taken from the VCTK dataset, the

Mozilla Common Voice dataset, and the AnonVox dataset.

This study employed three different TTS engines to create

synthesized counterparts to the authentic speech datasets.

The TTS engines used were XTTS3, StyleTTS2 [15], and

YourTTS [16]. Importantly, each of the datasets vary in their

channel conditions.

In order to examine the role of channel conditions, [14]

trained a TitaNet SVM model to identify whether the voices

are real or fake. While TitaNet is a speaker-recognition

model, its output consists of speaker embeddings, in this

case used as input to a Support Vector Machine (SVM)

3https://github.com/coqui-ai/TTS



model to classify the voice as either real or spoofed. They

then trained this model on real and spoofed voices from one

dataset, holding out data from the remaining datasets. Results

revealed that a model trained using this approach struggles

with identifying whether a voice is real or spoofed in the

out-of-domain (held out) dataset. Their results demonstrate

the need for an in-depth examination of liveness detection

methods in noisy speech.

III. DATASET AND METHODOLOGY

Our training and validation datasets contain data from

5 datasets: M-AILABS [17], Multi-Language Audio Anti-

Spoof Dataset [6], cellularized MLAAD, Clipwise (explained

below), and ASVspoof2019. The “cellularization” process is

explained in depth below.

Our test dataset comprises the five previously men-

tioned datasets along with three additional datasets: the

ASVspoof2019 evaluation set [18], the Call Home dataset

[19], and the cellularized ElevenLabs dataset – a version

of the LibriSpeech dataset [20] which we then converted

to synthetic speech using ElevenLabs. We describe each of

these datasets in depth below, and a breakdown is included

in Table I.

The motivation for the training set was to provide the

model with as much information as possible with respect

to a variety of synthesizers as well as a variety of chan-

nel conditions. The test set is designed to test a model’s

performance on out-of-domain distribution of synthesized

data as well as out-of-domain distribution of telephony data

samples captured over a cellular telephone network. The key

features of the test set are that it contains 14 novel (i.e., not

seen in training) synthesizers and speech that is both clean

and telephonic. As such, high performance on the test set

indicates that the model is able to generalize well.

• M-AILABS: M-AILABS [17] is a speech dataset that

contains nearly a thousand hours of audio book record-

ings in several different languages. The recordings were

produced in clean, relatively noise-free environments.

• Multi-Language Audio Anti-Spoof Dataset

(MLAAD): MLAAD [6] is a speech dataset based on

M-AILABS and contains 59 different text-to-speech

models in 26 different architectures. The corpus

contains a total of 175.0 hours of synthetic voice audio

in 23 different languages. The speech in the corpus is

taken from audio books or speeches and interviews of

public figures.

• Cellularized MLAAD: To create a noisier dataset, we

transmitted a subset of the MLAAD corpus through a

pipeline to generate telephonic versions of this data.

We describe the data generation process in Section

III-A. This process is the same for both the cellular-

ized MLAAD dataset and the cellularized ElevenLabs

dataset. This dataset is intended to emulate synthetic

speech in a telephonic environment.

• Cellularized ElevenLabs: Similar to the Cellular-

ized MLAAD dataset, this dataset contains synthetic

speech that has gone through our cellularization pro-

cess. Specifically, a subset of LibriSpeech [20] was

cloned using ElevenLabs’ state-of-the-art text-to-speech

program. In order to provide speaker-variability, we

used 175 distinct voices to generate the speech. More

accurately, for each file in the subset of the LibriSpeech

corpus, a voice was sampled at randomly from the

list of 175 distinct voices and used to generate speech

for the transcript of the LibriSpeech audio file. This

synthetic speech was then cellularized using the process

described in Section III-A. The goal was to emulate

realistic synthetic telephony data. Further, ElevenLabs

is considered a state-of-the-art synthesizer. Performance

on this data is critical to determining the model’s

robustness to a zero-day attack. The LibriSpeech dataset

was used to maximize the differences between the test

set and the training set. The LibriSpeech dataset, similar

to M-AILABS, is a speech corpus comprised of audio

book recordings.

• Clipwise: The Clipwise dataset comprises calls between

individuals and a financial institution. The audios have

two channels (caller-agent interaction), however only

the caller channel was used. The duration of the calls

range in length from a few seconds to tens of minutes.

• ASVspoof2019: We use the training and evaluation

sets from the logical access subset of their dataset

of the ASVspoof 2019 dataset [18]. More specifically,

the training set consists of speech from 20 different

speakers (8 male, 12 female) and 6 different spoofing

systems: 2 voice conversion (VC) systems and 4 text-

to-speech (TTS) systems. VC systems use a combina-

tion of neural-network and spectral-filtering approaches

while TTS systems use conventional a source-filter

vocoder or a WaveNet-based vocoder. The evaluation set

contains 13 novel synthesizers (not present in the train-

ing dataset). Thus performance on the ASVspoof2019

evaluation set indicates how well the model can gener-

alize to novel synthesizers.

• Call Home Dataset: The call home dataset [19] consists

of 120 unscripted 30-minute telephone conversations.

These took place in North America between native

American English speakers.

Altogether, Our dataset comprises 132,000 audio samples

in training, 16,500 audio samples in validation, and 84,377

samples in testing (Table II). A breakdown of the duration of

audio in each dataset is included below, however we include

a brief summary of the training, validation, and test sets

here. The training data comprises about 220.36 hours of

data, the validation data comprises about 27.47 hours of data,

and the test data comprises 96.77 hours of data. A plot of



Dataset Audio samples Training Validation Test

MLAAD Synthetic 36000 4500 4500
M-AILABS Human 24000 3000 3000
Cellularized MLAAD Synthetic 16000 2000 2000
Clipwise Human 40000 5000 5000
ASVspoof2019 Training Mix 16000 2000 2000
ASVspoof2019 Eval Mix – – 54540
Cellularized Elevenlabs Synthetic – – 1788
Call Home Human – – 11549

TABLE I: Dataset description.

the distribution of the mean duration of audio files in each

dataset along with the standard deviation of duration of audio

files is included in Figure 1.

A. Cellularization Process

In digital cellular communications, channel characteristics

play an important role in spoof detection. As the data packets

are transported over the radio channel, they encounter a wide

variety of channel conditions, including radio resource con-

tention, signal attenuation, and mobile handoffs [21]. Besides

the inherent channel noise, there is also ambient noise when

a user makes a phone call from a noisy environment (train

station, city street, etc.). All of these factors can influence

the audio quality and potentially make it more difficult for

a model to detect whether a voice is human or not. Thus,

our interest is in creating — and evaluating — a dataset that

captures both the inherent and ambient noises associated with

cellular telecommunications.

To simulate ambient noise, we randomly sampled a file

from the MLAAD dataset (and the ElevenLabs/LibriSpeech

dataset), overlaying it with a randomly sampled noise file

from the MUSAN noise corpus [22]. To approximate real-

world noise conditions, we randomized the introduction of

the noise across the playout duration time, and we varied

the noise volume randomly. Specifically, after normalizing

the volume of the audio file and the volume of the noise,

a number was uniformly sampled from N (25, 7.5). This

number was then subtracted from the normalized volume of

the noise.

The end result of this was a dataset that consisted of

audio files with ambient noise of varying intensities present

in different playout positions. To simulate the inherent

cellular communications channel characteristics, we used

three phones from different manufacturers across two service

providers (AT&T and Verizon). Location diversity was also

introduced by using the cellular phones in a crowded city

apartment, a suburban home, and a suburban apartment. The

audio samples created using the technique described in the

above paragraph were subsequently played through one of

the three cellular phones and transmitted through the service

provider’s network to create a cellularized MLAAD and

ElevenLabs dataset.

The play through process consisted of playing each file

that had ambient noise introduced to it on a laptop speaker

and positioning a cellular phone such that the audio was

captured by the cellular mic and transmitted on the cellular

network. The cellular phone was connected to a telephony

server that accepted the incoming call and stored the received

audio on disk (companies like Twilio, Vonage, RingCentral,

and FreeClimb provide such platforms, APIs, and phone

numbers). This process is depicted in Figure 2.4

IV. MODEL

The present study utilized transfer learning to adapt the

TitaNet speaker recognition model to the liveness detection

task [1]. We decided to use TitaNet because it is a speaker

recognition model that may have learned characteristics of

speech that could help it learn to differentiate between real

and spoofed voices5. Specifically, TitaNet is a 1D time depth-

wise channel separable convolutional model that combines a

ContextNet-like architecture with channel attention pooling.

This approach feeds the features extracted from the Con-

textNet model into the attentive pooling layer. A visualization

of our modifications to the architecture from [1] is presented

in Figure 3.

To test our dataset, we used the NVIDIA NeMo pre-

trained TitaNet speaker recognition model version 1.0 [1]

with a cross-entropy loss function instead of an additive

angular margin loss function6. We chose to use a speaker

recognition model such as TitaNet because it is likely that

TitaNet has learned some characteristics of the speech that

might facilitate performance in our liveness detection task.

To target the TitaNet model speaker recognition model

towards liveness detection, we swapped the 192 dimension

softmax output layer with a two dimension softmax layer.

Since fine-tuning the model with a new output layer with

randomized weights can lead to catastrophic forgetting of

the prior layers [23], we first froze all the other layers and

finetuned only the new output layer.

In deep neural networks, the last layer becomes specialized

for the specific task throughout learning [24]. Despite this,

the weights in the other layers still contain valuable knowl-

edge, such as features of different speakers’ voices. This

4Our code for this process can be found at https://github.com/
FreeClimbAPI/telephonizer.

5While we use TitaNet, many other models may also perform well using
our dataset and we leave further evaluation to future studies.

6We originally used an additive angular margin loss function, however we
found that for our task our model did not learn well with this loss function,
perhaps because our model has no need to optimize the cosine distance
between speaker embeddings, which is the main advantage of the additive
angular margin loss function.



Dataset Audio samples Training Duration Validation Duration Test Duration

MLAAD Synthetic 62.45 7.76 7.81
M-AILABS Human 41.09 5.12 5.16
Cellularized MLAAD Synthetic 30.65 3.81 3.85
Clipwise Human 54.67 6.82 8.70
ASVspoof2019 Training Mix 16.39 2.02 2.05
ASVspoof2019 Eval Mix – – 54.20
Cellularized Elevenlabs Synthetic – – 3.03
Call Home Human – – 11.97

TABLE II: Duration of audio for each dataset in hours.
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Fig. 1: Mean duration of audio files for each dataset. Lines indicate ±1 standard deviation.
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Fig. 2: A visualization of our cellularization process, a process by which we created noisy, telephony samples from the

clean relatively noise-free MLAAD recordings.

general knowledge may be useful in categorizing whether

a voice is human or synthetic. Through freezing these other

layers and retraining the output layer, we train the model

for the new task without forgetting all the knowledge it has

learned.

Finally, once the new output layer was trained, we fine-

tuned the entire model, without any layers frozen, to mini-

mize the cross-entropy function.

V. RESULTS AND DISCUSSION

Table III shows the confusion matrix on our full test set,

while Table IV shows the results on the entire test set. Our

overall accuracy is 0.959 with an EER of 0.041 (a low

EER is preferred as the model minimizes the chances of

false positives and false negatives). Additionally, a plot of

EER as a function of different thresholds can be found in

Figure 4. Interestingly, the optimal threshold is closer to 1,

demonstrating that a threshold that is strict about acceptance

performs best. With respect to the positive class being

recognized as a synthetic voices, the model also exhibits high
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Cross-Entropy Loss

Binary Output Layer

Fig. 3: TitaNet model with binary output layer and cross-

entropy loss function. This image is a modified version of

the one from [1].

precision and recall.

Actual

Predicted Synthetic Human

Synthetic 55176 1091
Human 2336 25774

TABLE III: Confusion matrix of our model results.

Statistic

Precision 0.981
Recall 0.959
Accuracy 0.959
EER 0.041

TABLE IV: Model statistics.

However, it is important to stratify the results, as per-

formance in- and out-of-domain will vary. Specifically,

the model performs exceptionally well on datasets which

have the same synthesizers or the same shared linguis-

tic content. For the subset of the test data comprising

MLAAD, M-AILABS, Cellularized MLAAD, Clipwise, and

ASVspoof2019 Training (i.e., for in-domain dataset), the

model achieves 99.2% accuracy (Table V). This suggests that

our model is quite successful in identifying whether audio

files that share characteristics with its training data are human

or spoofed.

Table V shows the accuracy for both in- and out-of-

distribution datasets. The model was able to achieve nearly

perfect accuracy in discriminating the synthetic samples from
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Fig. 4: Plot of our Equal Error Rate at various thresholds.

EER thresholds were calculated on the logit estimates pro-

duced by the model which were converted to probabilities

using softmax. The results demonstrate that the best thresh-

old is one that is relatively strict about what it accepts.

ElevenLabs7, which were transported over a cellular tele-

phony network. This performance suggests that ElevenLabs

may share genetic similarity with some of the open-source

synthesizers in our training set. It is possible that our model

may perform worse on a zero-day attack generated by a syn-

thesizer with never-seen-before features. This interpretation

is supported in part by the results on the ASVSpoof2019

evaluation set.

Domain Dataset Mean Accuracy

In-domain

asvspoof2019_training 0.998
cellularized_mlaad 1.000
mlaad 1.000
mailabs 0.972
clipwise 0.993

Out-of-domain
asvspoof2019 0.952
call_home 0.942
cellularized_elevenlabs 1.000

TABLE V: Results stratified by in-domain/out-of-domain

datasets.

Our model also shows a slight decrease in performance

for the Call Home dataset but still achieves a relatively high

accuracy. This is noteworthy because the Call Home dataset

is markedly different from our training data. Specifically,

the Call Home dataset comprises 120 unscripted 30-minute

telephone conversations. Additionally, the type of speech

was likely quite different between the Call Home dataset

and the Clipwise dataset. The audio Call Home dataset

consists largely of audio between family members or close

friends. On the other hand, the authentic telephonic samples

in the Clipwise dataset are calls between a customer and

a representative. Even when expressing the same meaning,

the context of use (i.e., whether it is spoken to a friend, a

coworker, etc) can drastically affect the form of the language

7ElevenLabs is a state-of-the-art synthetic voice generation platform that
is available commercially.



(the words and phrases used to express the meaning [25]).

In addition, it is also likely that the content expressed in a

call to a representative versus a call to a friend are also very

different. As a result, the type of audio in our telephonic

samples was almost certainly quite different from the type

of audio in the Call Home dataset. Additionally, the mean

duration of audio also varies by dataset, with the Call Home

audio samples being shorter on average than the Clipwise

dataset (Figure 1. Despite this, the high accuracy of our

model’s performance on this dataset suggests a high degree

of generalizability to novel contexts.

Finally, our model performs relatively well on the

AVSpoof2019 evaluation set, comparably to the leading

single-system models reported in the summary report [26].

Table VI presents a breakdown of the model’s performance

for each synthesizer in the AVSpoof2019 evaluation set.

The synthesizers that the model performs more poorly

on are A13, A17, and A18, which are notably different

from the synthesizers encountered in training. Though it is

worth mentioning that our model still performs well above

chance on these synthesizers. Specifically, A13 is a text-to-

speech voice-conversion system that uses a combination of

waveform concatenation and waveform filtering to produce

synthetic speech. A17 and A18 are both voice-conversion

systems, but A17 uses waveform filtering while A18 uses

a vocoder. The decrease in performance on A13 is likely

due to the absence of synthesizers that uses both waveform

filtering and waveform concatenation in the training set. The

training dataset contains no voice-conversion models that use

waveform filtering or a vocoder, which likely explains the

decrease in performance on A17 and A18. These results are

interesting because most of these features (voice-conversion

vs text-to-speech, waveform concatenation vs vocoder) were

present independently in some of the synthetic samples

in the training set. This suggests that encountering some

features alone isn’t sufficient for the model to learn that they

correspond to synthetic speech. Instead, certain combinations

of features can present challenges to the model, even if the

individual features existed in synthesizers in the training set.

Future research is needed to examine this vulnerability in

more depth.

A comment should be made about the determination

of whether a dataset is in- vs out-of-distribution. The

ASVspoof2019 dataset shares no synthesizers between their

training and evaluation sets, however they do share the

corpus used to develop it. It is also likely that the real audios

in that set have significant similarities between the training

and evaluation sets. Similarly, the Cellularized ElevenLabs

subset likely shares audio characteristics with the Cellular-

ized MLAAD subset, but has distinct text and synthesizer.

VI. CONCLUSION

We present a dataset comprised of authentic and spoofed

voices in both pristine and telephonic recording scenarios.

Further, we demonstrate that a model trained on this data

performs well on novel speech in both clean and telephony

environments as well as both familiar (i.e., seen in training)

and novel (i.e., not seen in training) synthesizers.

Previous studies lack diversity of synthesizers and lan-

guages and have not examined telephony speech. The present

study expands on the current body of literature by investigat-

ing key vulnerabilities in real-world environments. To this

end, we present a novel approach for creating telephonic

speech.

The test set contains several novel, unseen synthesizers

as well as novel, realistic telephony speech. This work

demonstrates that a model trained on this data performs well

on novel samples from known synthesizers, novel samples

from a novel synthesizer, and on novel telephony data.

Finally, the results suggest that certain combinations of

features, such as the use of voice conversion in conjunction

with a vocoder, may lead to reduced classification accuracy

when such combinations are not represented during training,

even if the individual features are present in isolation. This

highlights the importance of evaluating models not only on

isolated artifacts but also on compound feature interactions.

Although some synthesis characteristics are documented, a

comprehensive study of their influence on detection perfor-

mance remains a promising direction for future work. It

is difficult to assess this further within the current study

because ASVSpoof2019 does not make the identity of the

synthesizers public. In addition, extending this analysis to

include comparisons with other anti-spoofing approaches

may provide a clearer assessment of model robustness and

generalizability.
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