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Abstract—In the last few years, synthetic voices have become
incredibly realistic and more difficult to distinguish from
authentic, human voices. Although impressive, these advances
raise security concerns, increasing the need for models that can
discriminate between human and synthetic voices under real-
world conditions. While previous work has proposed datasets
and models that provide convincing results for high-quality
recordings, very few studies have examined the efficacy of
models under diverse conditions - both speaker and channel
variations. Thus, it is unclear how well these models generalize
to novel, less pristine channel conditions. In this paper, we
present a novel dataset for testing the performance of such
models under noisy conditions associated with the cellular
telephone network. We improve upon previous methods by
including a variety of synthesizers as well as languages. Finally,
we demonstrate that a model trained on this dataset can achieve
high accuracy on novel telephony data without any degradation
in accuracy on non-telephonic audio.

Index Terms—speech recognition, speaker recognition, auto-
matic speech recognition, telephony, biometric authentication

I. INTRODUCTION

The ability to create synthetic voices that can imitate an
individual’s voice has dramatically improved such that many
of these synthetic voices are difficult to distinguish from the
human voice that they imitate. The inability to discriminate
synthetic voices from human voices is of great concern for
many reasons. For example, synthetic voice clones can be
used for deception and to spread misinformation using the
familiar voice of an authority figure or political leader. When
conducting business through the telephone (phone banking,
for instance), it can be used to steal one’s identity, or access
bank accounts by impersonating the real user’s voice in
an interactive voice response setting. For example, recently
thieves imitated a company executive’s voice in order to steal
hundreds of thousands of dollars.

Thus, in this paper we present our work on detecting such
voice spoofs in telephony speech. Our specific contributions
are as follows:

« We create a telephony dataset that captures diverse
channel conditions associated with cellular networks.

Uhttps://www.scmp.com/print/news/world/article/3025772/
ai-first-voice-mimicking-software-used- major-heist.

dpluth@vailsys.com

Jordan Hosier
Vail Systems
Chicago, USA
jhosier@vailsys.com

Vijay K. Gurbani
Vail Systems
Chicago, USA
vgurbani @vailsys.com

We will provide this dataset and the corresponding code
to the research community.”

o« We present a novel approach to create high-quality
synthetic telephony data.

o We train a model that exhibits high accuracy in discrim-
inating real human voices from synthetic voices in both
clear and telephony speech, even when encountering
out-of-distribution synthetic samples created by high
end commercial synthetic voice generation tools.

e We apply transfer learning by re-purposing a high-
performance speaker embedding model for liveness
detection, showcasing the adaptability of speaker rep-
resentations to spoof detection tasks.

o We demonstrate the viability of a lesser-known fine-
tuning approach of freezing the output layer and fine-
tuning once to mitigate catastrophic forgetting.

The rest of this paper is structured as follows: Section II
positions our work in context with the current literature on
anti-spoofing, Section III outlines our datasets and method-
ology including a comprehensive account of the process
we used to introduce cellular network characteristics in the
datasets. We discuss our proposed changes to the NVIDIA
NeMo pre-trained TitaNet speaker recognition model [1] to
allow it to discriminate synthetic voices from live speakers.
We present the results of our work and subsequent discus-
sions in Section V, and we conclude in Section VI.

II. RELATED WORK

In the last few years, deep learning methods have advanced
rapidly, enabling text-to-speech models to achieve incredible
results [2]. Among these models, data-driven techniques have
resulted in text-to-speech and voice conversion models that
are extremely realistic. Data-driven voice synthesis models,
as their name suggests, learn the structure of the waveforms
from data. For example, Wavenet [3] uses a generative model
that produces speech by estimating the probability of the raw
waveform (conditioned on all the previous waveforms). This
approach has achieved state-of-the-art performance.

Voice cloning in text-to-speech as well as voice-conversion
both work by learning about not only the acoustics of the

2 Available at: https://github.com/vail-systems/IEEE-RTC-2025.



language they’re being trained on, but also by learning how
to encode speaker-embeddings. These embeddings capture
various characteristics of the speaker, such as their speech
rate or accent [4]. These speaker-embeddings can be learned
from only a few samples of audio [4], sometimes as little
as a few seconds of speech. By combining the speaker
embeddings with any given text, an audio can be created
making that ‘person’ say anything. The naturalness of these
models combined with how little audio they require has these
models suitable for abuse, with applications in identity theft
and misinformation campaigns.

As a consequence of these advancements, there has been
an increasing concern of spoofing attacks. Spoofing attacks
are attempts to trick a system into granting an unauthorized
user access. These attacks can take the form of several
different forms, such as impersonation, synthetic speech,
voice conversion, or replay attacks [5]. In the present study
we focus on a specific case of anti-spoofing, liveness de-
tection. In liveness detection, unlike other voice biometric
systems such as automatic speaker verification, the system
is only concerned with detecting whether the speech is
being generated from a live speaker or whether it has been
synthesized. For example, in an ideal world, the liveness
detection model would perfectly verify that the audio is
human-generated, and would flag any synthetic speech.

There have been several attempts to create datasets to train
and test liveness detection models [6, 7, 8] along with novel
models to detect spoofed voices [9, 10, 11, 12]. For example,
the Multi-Language Audio Anti-Spoof Dataset (MLAAD) is
a diverse dataset that contains data from 59 different text-to-
speech models in 23 languages. However, a crucial limitation
is that these recordings are all clean and relatively noise
free. For these datasets to be useful in a real-world setting, a
model must be able to achieve high performance in a noisier
environment and across diverse channel conditions.

Previous work has looked at how some properties of
speech affect liveness detection models’ ability to correctly
identify the speech as being human or not. For example, [13]
examined how silence in the audio files affects a model’s
performance on liveness detection. They found that equal
error rates (EERs) increase significantly when silence is
removed from the samples. In other words, by concatenating
silence to the beginning of an audio sample, one could fool
a liveness detection model. They argued that this is because
TTS algorithms generate speech with a lower proportion of
silence compared to human speech.

Additionally, [12] examined whether a classification model
could achieve high accuracy in detecting a replay attack
(previously recorded audio of a human being played back
into a microphone). In order to test their classification model,
they instructed participants to speak aloud various commands
into a cellphone and recorded them. The recordings were
made in an open lab environment such that there was an
element of noise present in the recordings. They found that
their classification model was able to perform well on this

dataset. However, while their dataset was recorded using a
cellphone microphone, there are key properties of telephonic
speech outside of just the microphone. For example, the
carrier, location, and amount of network traffic can all have
an effect on the quality of the audio as its transmitted across
a network.

Similarly, there have been previous attempts to create
datasets comprised of telephony speech [8, 9]. For example,
[8] introduced the telephony dataset, Phonespoof. Their ap-
proach consisted of replaying synthetic voices on a computer
and transferring it to a mobile phone using a 3Jack-4Jack
cable. While it was transferred, the mobile phone called into
one of two software: Smart Logger II or Smart Caller and
this call was recorded. Variability in the recording conditions
was introduced by using two different mobile phones and
two different telecommunications operators. However, this
dataset no longer reflects the current ecosystem. Specifically,
the data set is limited in language diversity, having examined
only English and Russian, and contains recordings obtained
by using products that no longer exist to capture calls. It
is not clear what effect these capture methods have on the
quality of the audio. Finally, rather than capturing the audio
with the cellphone microphones, they use a phone jack to
directly feed audio into the phone. This creates a distinct
audio characteristic that is only one of many possible ways
for an attacker to bypass security measures.

Additionally, [9] examined the vulnerability of speaker
verification systems against voice conversion attacks. They
examined the performance of models ranging from simple
Gaussian mixture models (GMMs) to a joint factor analysis
(JFA) recognizer. Their results suggested that these systems
are vulnerable to spoofing attacks, especially in telephonic
speech (speech transmitted through a telephone or cellular
network). However, since the paper’s publication, there have
been breakthroughs in both speaker-recognition models as
well as text-to-speech (TTS) models. Thus, it is unclear
whether these vulnerabilities remain.

More recently, [14] also examined the ability of a model to
identify whether a voice is authentic or not. While they did
not explicitly examine telephony speech, they did examine
the effects of channel conditions. Specifically, the generated
voice clones of speech taken from the VCTK dataset, the
Mozilla Common Voice dataset, and the AnonVox dataset.
This study employed three different TTS engines to create
synthesized counterparts to the authentic speech datasets.
The TTS engines used were XTTS?, StyleTTS2 [15], and
YourTTS [16]. Importantly, each of the datasets vary in their
channel conditions.

In order to examine the role of channel conditions, [14]
trained a TitaNet SVM model to identify whether the voices
are real or fake. While TitaNet is a speaker-recognition
model, its output consists of speaker embeddings, in this
case used as input to a Support Vector Machine (SVM)

3https://github.com/coqui-ai/TTS



model to classify the voice as either real or spoofed. They
then trained this model on real and spoofed voices from one
dataset, holding out data from the remaining datasets. Results
revealed that a model trained using this approach struggles
with identifying whether a voice is real or spoofed in the
out-of-domain (held out) dataset. Their results demonstrate
the need for an in-depth examination of liveness detection
methods in noisy speech.

III. DATASET AND METHODOLOGY

Our training and validation datasets contain data from
5 datasets: M-AILABS [17], Multi-Language Audio Anti-
Spoof Dataset [6], cellularized MLAAD, Clipwise (explained
below), and ASVspoof2019. The “cellularization” process is
explained in depth below.

Our test dataset comprises the five previously men-
tioned datasets along with three additional datasets: the
ASVspoof2019 evaluation set [18], the Call Home dataset
[19], and the cellularized ElevenLabs dataset — a version
of the LibriSpeech dataset [20] which we then converted
to synthetic speech using ElevenLabs. We describe each of
these datasets in depth below, and a breakdown is included
in Table I.

The motivation for the training set was to provide the
model with as much information as possible with respect
to a variety of synthesizers as well as a variety of chan-
nel conditions. The test set is designed to test a model’s
performance on out-of-domain distribution of synthesized
data as well as out-of-domain distribution of telephony data
samples captured over a cellular telephone network. The key
features of the test set are that it contains 14 novel (i.e., not
seen in training) synthesizers and speech that is both clean
and telephonic. As such, high performance on the test set
indicates that the model is able to generalize well.

« M-AILABS: M-AILABS [17] is a speech dataset that
contains nearly a thousand hours of audio book record-
ings in several different languages. The recordings were
produced in clean, relatively noise-free environments.

e Multi-Language  Audio  Anti-Spoof  Dataset
(MLAAD): MLAAD [6] is a speech dataset based on
M-AILABS and contains 59 different text-to-speech
models in 26 different architectures. The corpus
contains a total of 175.0 hours of synthetic voice audio
in 23 different languages. The speech in the corpus is
taken from audio books or speeches and interviews of
public figures.

e Cellularized MLAAD: To create a noisier dataset, we
transmitted a subset of the MLAAD corpus through a
pipeline to generate telephonic versions of this data.
We describe the data generation process in Section
III-A. This process is the same for both the cellular-
ized MLAAD dataset and the cellularized ElevenLabs
dataset. This dataset is intended to emulate synthetic
speech in a telephonic environment.

e Cellularized ElevenLabs: Similar to the Cellular-
ized MLAAD dataset, this dataset contains synthetic
speech that has gone through our cellularization pro-
cess. Specifically, a subset of LibriSpeech [20] was
cloned using ElevenLabs’ state-of-the-art text-to-speech
program. In order to provide speaker-variability, we
used 175 distinct voices to generate the speech. More
accurately, for each file in the subset of the LibriSpeech
corpus, a voice was sampled at randomly from the
list of 175 distinct voices and used to generate speech
for the transcript of the LibriSpeech audio file. This
synthetic speech was then cellularized using the process
described in Section III-A. The goal was to emulate
realistic synthetic telephony data. Further, ElevenLabs
is considered a state-of-the-art synthesizer. Performance
on this data is critical to determining the model’s
robustness to a zero-day attack. The LibriSpeech dataset
was used to maximize the differences between the test
set and the training set. The LibriSpeech dataset, similar
to M-AILABS, is a speech corpus comprised of audio
book recordings.

o Clipwise: The Clipwise dataset comprises calls between
individuals and a financial institution. The audios have
two channels (caller-agent interaction), however only
the caller channel was used. The duration of the calls
range in length from a few seconds to tens of minutes.

e ASVspoof2019: We use the training and evaluation
sets from the logical access subset of their dataset
of the ASVspoof 2019 dataset [18]. More specifically,
the training set consists of speech from 20 different
speakers (8 male, 12 female) and 6 different spoofing
systems: 2 voice conversion (VC) systems and 4 text-
to-speech (TTS) systems. VC systems use a combina-
tion of neural-network and spectral-filtering approaches
while TTS systems use conventional a source-filter
vocoder or a WaveNet-based vocoder. The evaluation set
contains 13 novel synthesizers (not present in the train-
ing dataset). Thus performance on the ASVspoof2019
evaluation set indicates how well the model can gener-
alize to novel synthesizers.

o Call Home Dataset: The call home dataset [19] consists
of 120 unscripted 30-minute telephone conversations.
These took place in North America between native
American English speakers.

Altogether, Our dataset comprises 132,000 audio samples
in training, 16,500 audio samples in validation, and 84,377
samples in testing (Table II). A breakdown of the duration of
audio in each dataset is included below, however we include
a brief summary of the training, validation, and test sets
here. The training data comprises about 220.36 hours of
data, the validation data comprises about 27.47 hours of data,
and the test data comprises 96.77 hours of data. A plot of



Dataset Audio samples | Training | Validation Test
MLAAD Synthetic 36000 4500 4500
M-AILABS Human 24000 3000 3000
Cellularized MLAAD Synthetic 16000 2000 2000
Clipwise Human 40000 5000 5000
ASVspoof2019 Training | Mix 16000 2000 2000
ASVspoof2019 Eval Mix - — | 54540
Cellularized Elevenlabs Synthetic - - 1788
Call Home Human - — | 11549

TABLE I: Dataset description.

the distribution of the mean duration of audio files in each
dataset along with the standard deviation of duration of audio
files is included in Figure 1.

A. Cellularization Process

In digital cellular communications, channel characteristics
play an important role in spoof detection. As the data packets
are transported over the radio channel, they encounter a wide
variety of channel conditions, including radio resource con-
tention, signal attenuation, and mobile handoffs [21]. Besides
the inherent channel noise, there is also ambient noise when
a user makes a phone call from a noisy environment (train
station, city street, etc.). All of these factors can influence
the audio quality and potentially make it more difficult for
a model to detect whether a voice is human or not. Thus,
our interest is in creating — and evaluating — a dataset that
captures both the inherent and ambient noises associated with
cellular telecommunications.

To simulate ambient noise, we randomly sampled a file
from the MLAAD dataset (and the ElevenLabs/LibriSpeech
dataset), overlaying it with a randomly sampled noise file
from the MUSAN noise corpus [22]. To approximate real-
world noise conditions, we randomized the introduction of
the noise across the playout duration time, and we varied
the noise volume randomly. Specifically, after normalizing
the volume of the audio file and the volume of the noise,
a number was uniformly sampled from N(25,7.5). This
number was then subtracted from the normalized volume of
the noise.

The end result of this was a dataset that consisted of
audio files with ambient noise of varying intensities present
in different playout positions. To simulate the inherent
cellular communications channel characteristics, we used
three phones from different manufacturers across two service
providers (AT&T and Verizon). Location diversity was also
introduced by using the cellular phones in a crowded city
apartment, a suburban home, and a suburban apartment. The
audio samples created using the technique described in the
above paragraph were subsequently played through one of
the three cellular phones and transmitted through the service
provider’s network to create a cellularized MLAAD and
ElevenLabs dataset.

The play through process consisted of playing each file
that had ambient noise introduced to it on a laptop speaker
and positioning a cellular phone such that the audio was

captured by the cellular mic and transmitted on the cellular
network. The cellular phone was connected to a telephony
server that accepted the incoming call and stored the received
audio on disk (companies like Twilio, Vonage, RingCentral,
and FreeClimb provide such platforms, APIs, and phone
numbers). This process is depicted in Figure 2.4

IV. MODEL

The present study utilized transfer learning to adapt the
TitaNet speaker recognition model to the liveness detection
task [1]. We decided to use TitaNet because it is a speaker
recognition model that may have learned characteristics of
speech that could help it learn to differentiate between real
and spoofed voices®. Specifically, TitaNet is a 1D time depth-
wise channel separable convolutional model that combines a
ContextNet-like architecture with channel attention pooling.
This approach feeds the features extracted from the Con-
textNet model into the attentive pooling layer. A visualization
of our modifications to the architecture from [1] is presented
in Figure 3.

To test our dataset, we used the NVIDIA NeMo pre-
trained TitaNet speaker recognition model version 1.0 [1]
with a cross-entropy loss function instead of an additive
angular margin loss function®. We chose to use a speaker
recognition model such as TitaNet because it is likely that
TitaNet has learned some characteristics of the speech that
might facilitate performance in our liveness detection task.

To target the TitaNet model speaker recognition model
towards liveness detection, we swapped the 192 dimension
softmax output layer with a two dimension softmax layer.
Since fine-tuning the model with a new output layer with
randomized weights can lead to catastrophic forgetting of
the prior layers [23], we first froze all the other layers and
finetuned only the new output layer.

In deep neural networks, the last layer becomes specialized
for the specific task throughout learning [24]. Despite this,
the weights in the other layers still contain valuable knowl-
edge, such as features of different speakers’ voices. This

40ur code for this process can be found at https:/github.com/
FreeClimbAPI/telephonizer.

SWhile we use TitaNet, many other models may also perform well using
our dataset and we leave further evaluation to future studies.

6We originally used an additive angular margin loss function, however we
found that for our task our model did not learn well with this loss function,
perhaps because our model has no need to optimize the cosine distance
between speaker embeddings, which is the main advantage of the additive
angular margin loss function.



Dataset Audio samples | Training Duration | Validation Duration | Test Duration
MLAAD Synthetic 62.45 7.76 7.81
M-AILABS Human 41.09 5.12 5.16
Cellularized MLAAD Synthetic 30.65 3.81 3.85
Clipwise Human 54.67 6.82 8.70
ASVspoof2019 Training | Mix 16.39 2.02 2.05
ASVspoof2019 Eval Mix - - 54.20
Cellularized Elevenlabs Synthetic - - 3.03
Call Home Human - - 11.97

TABLE II: Duration of audio for each dataset in hours.
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Fig. 1: Mean duration of audio files for each dataset. Lines indicate 1 standard deviation.
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Fig. 2: A visualization of our cellularization process, a process by which we created noisy, telephony samples from the

clean relatively noise-free MLAAD recordings.

general knowledge may be useful in categorizing whether
a voice is human or synthetic. Through freezing these other
layers and retraining the output layer, we train the model
for the new task without forgetting all the knowledge it has
learned.

Finally, once the new output layer was trained, we fine-
tuned the entire model, without any layers frozen, to mini-
mize the cross-entropy function.

V. RESULTS AND DISCUSSION

Table III shows the confusion matrix on our full test set,
while Table IV shows the results on the entire test set. Our
overall accuracy is 0.959 with an EER of 0.041 (a low
EER is preferred as the model minimizes the chances of
false positives and false negatives). Additionally, a plot of
EER as a function of different thresholds can be found in
Figure 4. Interestingly, the optimal threshold is closer to 1,
demonstrating that a threshold that is strict about acceptance
performs best. With respect to the positive class being
recognized as a synthetic voices, the model also exhibits high
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precision and recall.

Actual
Predicted | Synthetic Human
Synthetic 55176 1091
Human 2336 25774

TABLE III: Confusion matrix of our model results.

Statistic
Precision 0.981
Recall 0.959
Accuracy 0.959
EER 0.041

TABLE IV: Model statistics.

However, it is important to stratify the results, as per-
formance in- and out-of-domain will vary. Specifically,
the model performs exceptionally well on datasets which
have the same synthesizers or the same shared linguis-
tic content. For the subset of the test data comprising
MLAAD, M-AILABS, Cellularized MLAAD, Clipwise, and
ASVspoof2019 Training (i.e., for in-domain dataset), the
model achieves 99.2% accuracy (Table V). This suggests that
our model is quite successful in identifying whether audio
files that share characteristics with its training data are human
or spoofed.

Table V shows the accuracy for both in- and out-of-
distribution datasets. The model was able to achieve nearly
perfect accuracy in discriminating the synthetic samples from

1.00

Statistic
0.50 — FAR (False Accept Rate)
— FRR (False Reject Rate)

Error Rate

0.25

0.00

—40 -20 20 40

0
Threshold
Fig. 4: Plot of our Equal Error Rate at various thresholds.
EER thresholds were calculated on the logit estimates pro-
duced by the model which were converted to probabilities
using softmax. The results demonstrate that the best thresh-
old is one that is relatively strict about what it accepts.

ElevenLabs’, which were transported over a cellular tele-
phony network. This performance suggests that ElevenLabs
may share genetic similarity with some of the open-source
synthesizers in our training set. It is possible that our model
may perform worse on a zero-day attack generated by a syn-
thesizer with never-seen-before features. This interpretation
is supported in part by the results on the ASVSpoof2019
evaluation set.

Domain Dataset Mean Accuracy
asvspoof2019_training 0.998
cellularized_mlaad 1.000

In-domain mlaad 1.000
mailabs 0.972
clipwise 0.993
asvspoof2019 0.952

Out-of-domain | call_home 0.942
cellularized_elevenlabs 1.000

TABLE V: Results stratified by in-domain/out-of-domain
datasets.

Our model also shows a slight decrease in performance
for the Call Home dataset but still achieves a relatively high
accuracy. This is noteworthy because the Call Home dataset
is markedly different from our training data. Specifically,
the Call Home dataset comprises 120 unscripted 30-minute
telephone conversations. Additionally, the type of speech
was likely quite different between the Call Home dataset
and the Clipwise dataset. The audio Call Home dataset
consists largely of audio between family members or close
friends. On the other hand, the authentic telephonic samples
in the Clipwise dataset are calls between a customer and
a representative. Even when expressing the same meaning,
the context of use (i.e., whether it is spoken to a friend, a
coworker, etc) can drastically affect the form of the language

7ElevenLabs is a state-of-the-art synthetic voice generation platform that
is available commercially.



(the words and phrases used to express the meaning [25]).
In addition, it is also likely that the content expressed in a
call to a representative versus a call to a friend are also very
different. As a result, the type of audio in our telephonic
samples was almost certainly quite different from the type
of audio in the Call Home dataset. Additionally, the mean
duration of audio also varies by dataset, with the Call Home
audio samples being shorter on average than the Clipwise
dataset (Figure 1. Despite this, the high accuracy of our
model’s performance on this dataset suggests a high degree
of generalizability to novel contexts.

Finally, our model performs relatively well on the
AVSpoof2019 evaluation set, comparably to the leading
single-system models reported in the summary report [26].
Table VI presents a breakdown of the model’s performance
for each synthesizer in the AVSpoof2019 evaluation set.
The synthesizers that the model performs more poorly
on are Al3, Al7, and A18, which are notably different
from the synthesizers encountered in training. Though it is
worth mentioning that our model still performs well above
chance on these synthesizers. Specifically, A13 is a text-to-
speech voice-conversion system that uses a combination of
waveform concatenation and waveform filtering to produce
synthetic speech. A17 and A18 are both voice-conversion
systems, but A17 uses waveform filtering while A18 uses
a vocoder. The decrease in performance on Al3 is likely
due to the absence of synthesizers that uses both waveform
filtering and waveform concatenation in the training set. The
training dataset contains no voice-conversion models that use
waveform filtering or a vocoder, which likely explains the
decrease in performance on A17 and A18. These results are
interesting because most of these features (voice-conversion
vs text-to-speech, waveform concatenation vs vocoder) were
present independently in some of the synthetic samples
in the training set. This suggests that encountering some
features alone isn’t sufficient for the model to learn that they
correspond to synthetic speech. Instead, certain combinations
of features can present challenges to the model, even if the
individual features existed in synthesizers in the training set.
Future research is needed to examine this vulnerability in
more depth.

A comment should be made about the determination
of whether a dataset is in- vs out-of-distribution. The
ASVspoof2019 dataset shares no synthesizers between their
training and evaluation sets, however they do share the
corpus used to develop it. It is also likely that the real audios
in that set have significant similarities between the training
and evaluation sets. Similarly, the Cellularized ElevenLabs
subset likely shares audio characteristics with the Cellular-
ized MLAAD subset, but has distinct text and synthesizer.

VI. CONCLUSION

We present a dataset comprised of authentic and spoofed
voices in both pristine and telephonic recording scenarios.
Further, we demonstrate that a model trained on this data

performs well on novel speech in both clean and telephony
environments as well as both familiar (i.e., seen in training)
and novel (i.e., not seen in training) synthesizers.

Previous studies lack diversity of synthesizers and lan-
guages and have not examined telephony speech. The present
study expands on the current body of literature by investigat-
ing key vulnerabilities in real-world environments. To this
end, we present a novel approach for creating telephonic
speech.

The test set contains several novel, unseen synthesizers
as well as novel, realistic telephony speech. This work
demonstrates that a model trained on this data performs well
on novel samples from known synthesizers, novel samples
from a novel synthesizer, and on novel telephony data.

Finally, the results suggest that certain combinations of
features, such as the use of voice conversion in conjunction
with a vocoder, may lead to reduced classification accuracy
when such combinations are not represented during training,
even if the individual features are present in isolation. This
highlights the importance of evaluating models not only on
isolated artifacts but also on compound feature interactions.
Although some synthesis characteristics are documented, a
comprehensive study of their influence on detection perfor-
mance remains a promising direction for future work. It
is difficult to assess this further within the current study
because ASVSpoof2019 does not make the identity of the
synthesizers public. In addition, extending this analysis to
include comparisons with other anti-spoofing approaches
may provide a clearer assessment of model robustness and
generalizability.
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AlS5 TTS_VC | neural waveform 1.000 3895
Al6 TTS waveform concatenation 1.000 3709
Al17 vC waveform filtering 0.882 4717
Al8 vC vocoder 0.713 4718
Al19 vC spectral filtering 0.998 4702

TABLE VI: Mean accuracy and number of observations per novel synth in the ASVspoof2019 evaluation dataset. The
bolded observations indicate low performance.
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