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Abstract—Computational speaker separation, or multi-talker
separation, attempts to use neural network models to separate a
stream containing multiple speakers into an individual stream for
each speaker. Such separation has advantages in many situations,
for example, an emergency 911 call may contain multiple people
talking simultaneously; in a call-center scenario, the agent may be
presented with an audio stream that contains a customer speaking
while a television is playing in the background; interviews and
political debates often consist of speakers talking over each other.
In all of these cases, separating the mixed stream into individual
streams enables back-end processes to detect which particular
stream is of importance, and provides for greater conversational
intelligence from the separated streams when compared to the
mixed stream. In this paper, we examine which features are im-
portant to the speaker separation problem; we comprehensively
examine 14 characteristic features of a mixed audio stream to
determine the subset of features that lead to a cleaner separation.
Our key results are that four features, namely minimum intensity,
minimum pitch, difference in intensity, and difference in pitch
lead to superior speaker separation. By providing significant
evidence into the relationship between input audio features and
separation efficacy, this work contributes towards optimizing
novel strategies for speaker separation systems.

Index Terms—Speech Separation, Audio Signal Processing,
Feature Extraction, Convolutional Neural Networks (CNNs),
Permutation Feature Importance, SHAP values, Transformer
Models, Self-Attention Mechanism

I. INTRODUCTION AND PROBLEM STATEMENT

Many real-world communication scenarios require under-
standing speech streams that are intertwined. For example,
emergency 911 call centers routinely get calls where the
caller’s voice is interspersed with other surrounding voices
(background conversations, the television, or another person
arguing with the caller). Similarly, in a political debate, or an
interview, there may be two people speaking simultaneously
such that the resulting conversation is unintelligible. In many
call center operations, the agent handles calls from customers
who are in a noisy environment with the mic picking up nearby
conversations. In all of these cases, separating the mixed
stream into individual streams enables back-end processes to
identify the most important stream for further processing.
Further, decomposing the mixed stream into its individual
streams allows for greater conversational intelligence from the
separated streams when compared to the mixed stream.

We note that the speaker separation problem is a subset
of speech separation but distinct from speaker diarization.
Speech separation can be considered as a superset of speaker
separation as the background interference from which speech
is separated can consist of background noise, music, and even
other speakers [18]. However, speaker diarization is concerned
with labeling portions of audio with a speaker identity to
identify “who spoke when” [16].

Single-channel, or monaural speaker separation is a fun-
damental problem in audio and speech processing with early
work on separation based primarily on signal processing at the
spectrum level of the input signal [5], [11]. Recent work in
the area of speaker separation is based on deep learning neural
networks [7], [8], [13], [17], [23], [24]. In such approaches,
a deep neural network learns to predict time-frequency masks
of two speakers1 in a mixture consisting of a monaural source.
However, the disadvantage of using deep neural networks is
their lack of interpretability; it is not entirely clear what is the
cause when a neural network models excels at separation. Are
certain features of the mixed audio stream more important than
others, and if so, what is the subset of those features? Further,
it remains unclear whether the high efficacy demonstrated on
the held-out test dataset will translate to an equivalently high
efficacy for out-of-distribution samples.
Contributions: This work systematically answers these ques-
tions with an ultimate goal of informing future speaker sep-
aration systems of novel strategies to explore for superior
separation. Concretely, our contributions are:

• We enumerate a set of features that leads to superior
optimal separation,

• We demonstrate that these features are invariant of the
dataset from which they are collected, i.e., they are
generalizable across multiple out-of-distribution datasets,

• We make publicly available two datasets collectively
consisting of 1,400 individual audio files (9,803 seconds)
and 700 mixed audio files for further research into
dependable speaker separation. The datasets are available
at https://github.com/vkgurbani/ieee southeastcon 2024.

1We limit our investigation to an monaural mixed stream consisting of two
speakers, as the current state of art open source models are not competitive
for separating mixes containing more than two speakers [14].

https://github.com/vkgurbani/ieee_southeastcon_2024


The rest of the paper is organized as follows. Section II
puts our work in the context of other literature evaluating
speaker separation systems. Section III discusses the datasets
that we used in our approach, and Section IV details our
overall methodology on evaluating the efficacy of a subset
of features that contribute to superior separation. Section
V subsequently outlines our feature importance process and
presents a set of features that optimize speaker separation;
Section VI demonstrates the generalizability of the chosen
feature set on a separate, out-of-distribution dataset. Finally,
we conclude and outline future work in this area in Section
VII.

II. RELATED WORK

In placing our work in the context of existing literature, we
focus on speaker separation rather than the more general area
of speech separation; and within speaker separation, we review
literature that evaluates speaker separation systems rather than
work that describes novel speaker separation algorithms.

Much of the literature in evaluating speaker separation
systems uses signal-based metrics such as the signal-to-noise
(SNR) ratio [4], [6], [20], [21]; such metrics have a weak
correlation with ASR accuracy. Our work, takes a much
different approach. First we enumerate the features of the
mixed streams to determine which particular features are
important, and second, we evaluate the speaker separation
system through a word error rate (WER2) metric obtained from
the post-separation stream by sending it through an ASR and
comparing the resulting WER with the WER of the stream
before it was mixed.

Wichern et al. [22] evaluate WSJ0-2mix dataset in varying
outdoor environments to evaluate robustness to noise; they
do not consider ASR evaluation of the separated streams or
feature importance in their work. Bahmaninezhad et a;. [1]
simulated a multi-channel spatialized reverberate dataset and
evaluated the separation using signal-based metrics as well
as WER; however, their ASR system was trained on clean
non-reverberate data thus rendering high WER rates on the
separated data streams (an average WER of 44% across the
models in their experiment).

Other works have used exogenous information to separate
speakers; Wang et al. [19] use “speaker inventories” to dis-
tinguish speakers. A speaker inventory consists of a list of
speaker profiles collected from the speakers. It is not entirely
clear that such inventories will be available in for different
scenarios where speaker separation may be used. For example,
in an emergency 911 use case or a call-center conversation,
such inventories will not be readily available. Khan et al. [9]
utilize visual speech features by focusing on the mouth region
of each speaker. This will require a camera to capture the
video of the speakers, a constraint for most use cases where
only the audio is available for analysis.

2The WER is a widely accepted metric to measure the performance of a
speech recognition system. We define it formally in Section IV.

TABLE I: Summary of derived datasets
Number of

files
Number of seconds

(Min/1st. Qu./Median/Mean/3rd Qu./Max)
Dataset-1
VoxCeleb

400
2,866

(4.0 / 5.4 / 7.0 / 7.2 / 8.8 / 11.0)
Dataset-2
Mozilla
Common
Voice

1,000
6,936

(3.0 / 5.0 / 7.0 / 7.0 / 9.0 / 10.9)

III. DATASETS

We used two datasets for our work: the VoxCeleb dataset
[15] and the Mozilla Common Voice dataset (Common Voice
Corpus 12.03). The VoxCeleb dataset is a collection of more
than 100,000 utterances attributed to 1,251 distinct celebrities,
sourced from videos hosted on the YouTube platform. Notably,
the dataset encompasses speech samples from a heterogeneous
spectrum of speakers, representing diverse demographics in
terms of age, profession, accent, and ethnicity. An inherent
characteristic of VoxCeleb is the incorporation of ”in the
wild” speech recordings, thereby encapsulating a plethora of
real-world conditions including ambient noise, instances of
laughter, speech overlap, and variable vocal demeanor. The
Mozilla Common Voice dataset consists of MP3 audio file and
an associated text file. A distinguishing feature of the dataset is
its incorporation of 3,161 recorded hours, within which a sig-
nificant portion is enriched with supplementary demographic
attributes, including variables such as age, gender, and accent.

We created two derivative datasets from the VoxCeleb and
Mozilla Common Voice datasets. The first dataset (“Dataset-
1”) was derived from the VoxCeleb dataset and was used to
derive the important features that lead to a clean separation
(cf. Section V). The second dataset (“Dataset-2”) was curated
from Mozilla Common Voice. Table I summarizes the datasets.

IV. METHODOLOGY

We now describe the experimental framework for conduct-
ing a systematic investigation into understanding the feature
importance for speaker separation. The overall process is
depicted in Figure 1.

Fig. 1: Methodological steps

The mixes were created from VoxCeleb and Mozilla Com-
mon Voice as described in the previous section. From Vox-
Celeb dataset we randomly chose 400 individual streams and

3https://commonvoice.mozilla.org/en/datasets



from the Mozilla Common Voice corpus we randomly chose
1,000 streams. Streams were chosen from these corpora such
that the mean of the streams was around 7s with a standard
deviation of 2s; we chose these values because shorter audio
streams may not offer enough context to the deep learning
separation model to allow effective separation, while longer
audio will simply require more processing without affecting
the accuracy. Each stream was normalized to achieve a uniform
volume level. Once the streams were normalized, we mixed a
pair of streams; we do not cross-contaminate the mixes, i.e.,
streams from VoxCeleb dataset were only mixed with another
stream from the same dataset (and similarly for Mozilla
Common Voice). The mixing resulted in 200 mixed streams for
VoxCeleb and 500 mixed streams for Mozilla Common Voice.
The mixed streams from the VoxCeleb dataset (Dataset-1) are
used in Section V to gather the important features, whilst the
mixed streams from the Mozilla Common Voice dataset are
used in Section VI to demonstrate the generalizability of the
selected features on an out-of-distribution corpus.

Formally, let S be a set of audio streams {s1, s2, ..., sn}
with |S| = n. Let (si, si+1) ∈ S, i ∈ {1, n} be two adjacent
audio streams that need to be mixed. The mixture procedure
can be abstracted mathematically as a transform T shown in
Equation 2 that maps adjacent pair of elements in S to an
element in M :

S
T−→ M (1)

More specifically, for each pair of adjacent streams in S,
transform T mixes these into a single audio stream in M , or

(si, si+1)
T−→ Mk,

{i ∈ {1, n− 1} | i is odd}, k ∈ {1, n/2},
(2)

Note that |M | = n/2.
Next, each mixed audio stream in M are separated using

a transform, T−1, that decomposes each element of M to its
corresponding pair of streams in S′, i.e.,

M
T−1

−−→ S′ (3)

Mathematically T−1 transform is the inverse operation of
Equation 2, i.e., every mixed stream in M is decomposed
into its individual streams (di, di+1) ∈ S′ through the inverse
transform T−1:

Mk
T−1

−−→ (d(k∗2)−1, d(k∗2)) k ∈ {1, n/2} (4)

Note that |S′| = |S| = n. Practically, T could be realized as
the Sound eXchange (SoX4) audio editing software, and the
SepFormer deep neural speech separation model [17] can be
used as the inverse, T−1.

Given an si and its corresponding di, the next step would
be to measure the degradation of the audio signal between
the original stream (si) and the corresponding decomposed
stream (di). To measure this degradation, we use the Amazon

4SoX Sound eXchange, http://sox.sourceforge.net/.

Transcribe Automatic Speech Recognition (ASR) service5.
This service accepts an audio file and produces a text transcript
corresponding to the audio file. We uploaded the audio files
from S and from S′ to the platform and received their text
transcripts. Recall that S contains the individual audio streams
before they were mixed, and S′ contains the audio streams that
resulted from separating the mixtures.

Clearly, because the mixing process will degrade the signal
to some extent, a metric is required to measure this degrada-
tion; we choose the Word Error Rate (WER) as this metric
[10]. The WER is a widely accepted metric to measure the
performance of a speech recognition system. It is calculated as
the number of substitutions, deletions, and insertions required
to transform a hypothesis string to a reference string, or

WER =
substitutions+deletions+insertions

word count
(5)

The reference string acts as the “ground truth”, and the number
of edits are calculated to get the hypothesis string to match
the reference string. The WER should be minimized, i.e.,
smaller values are preferred. In practice, a WER > 0.15
prohibits further processing as it represents enough noise in
the transcript to prohibit downstream computations that use
the text transcript.

In order to have high confidence in the results of this
experiment, we used human transcriptions to create the ground
truth. That is, for the subset of si ∈ S that corresponded to
the observations in Dataset-1, each observation in this subset
was heard by a human and transcribed. For the remaining
observations in S that corresponded to Dataset-2, we chose
those audio streams from Mozilla Common Voice that had
human transcripts. Mozilla Common Voice has a community
process by which certain audio streams also have the corre-
sponding transcript as meta-data; when choosing the audio
streams from Mozilla Common Voice, we only chose those
that had valid transcripts. Armed with these human-generated
transcripts, we used Amazon Transcribe and Google Speech-
to-text6 ASR to generate WER for all observations in S. For
our dataset, Amazon Transcribe yielded a lower WER; for the
rest of our experiments, we use Amazon Transcribe.

With the sets S, M , and S′ ready, we now proceed to
deriving the features themselves, and to understand their im-
portance through training machine learning classifiers (Section
V). Once the important features have been determined, we
demonstrate their generalizability by studying their behaviour
on a completely different, out-of-distribution dataset to deter-
mine whether they remain invariant (Section VI).

V. DERIVING FEATURE IMPORTANCE

To understand which features lead to better separation, we
first had to define the features. The work of defining features
was done on Dataset-1, i.e., the 400 observations (leading to
200 mixes) of the VoxCeleb dataset.

5https://aws.amazon.com/pm/transcribe/
6https://cloud.google.com/speech-to-text

http://sox.sourceforge.net/.
https://aws.amazon.com/pm/transcribe/


A. Feature Selection

In order to identify important audio characteristics for the
separation of audios, a set of candidate features was generated.
These features were generated with no assumed knowledge. A
subset of the audios of S was examined manually to determine
simply what features varied between files in the set. The data
for each of the features was generated algorithmically using
Praat [2] where possible and by careful listening otherwise.
Once collected, these features were further pruned according
to variance that existed within the dataset. If the vast majority
of the data had no variance for a particular feature, it was
excluded from the analysis. This left us with a set of seven
primary features fS :

1) Perceived gender
2) Presence of two or more speakers
3) Presence of background noise
4) Minimum pitch
5) Maximum pitch
6) Minimum intensity
7) Minimum intensity

When the mixtures M were created, a new set of mixed
stream audio features fM were created based on fS . Features
that were factors were appropriately one-hot encoded, whereas
numerical values were maintained. This resulted in the follow-
ing feature list fM :

1) Gender: either male-male, male-female, or female-
female pairs.

2) Multiple speakers: not present, present in one stream,
present in both streams.

3) Background noise: 19 classes based on noise combina-
tions as well as an additional class for noise absent.

4) Minimum pitch: The overall lowest pitch value.
5) Minimum intensity: The overall lowest volume value.
6) Pitch difference: The range between the highest pitch

and the lowest pitch.
7) Intensity difference: The range between the highest

volume and the lowest volume.

As an example, consider two adjacent streams (si, s(i+1)) ∈
S as shown in Table II. From these adjacent streams, a
single observation is created that contains the feature list
fM shown in Table III. The values in Table III are derived
as follows: Gender is encoded into a categorical (integer)
value, for example if both streams in Table II have M/M, the
value is 0, if M/F, value is 1, etc., and similar categorical
values are derived for multiple speakers. Background noise is
categorized with discrete integer values corresponding to the
type of background noise. Pitch min and intensity min are
simply the minimum values of the corresponding pair of rows
in Table II, while pitch difference and intensity difference are
calculated as follows:

pitch diff = max(pitch(si), pitch(s(i+1)))−
min(pitch(si), pitch(s(i+1)))

intensity diff = max(intensity(si), intensity(s(i+1)))−
min(intensity(si), intensity(s(i+1)))

(6)
We create a feature vector matrix with predictors shown in

Table III for all observations in S.

B. Target Variable Encoding

With the predictors defined as described in the previous
section, we now proceed to create a target variable. We derive
a binary target using the WER; the WER is calculated by
comparing transcripts generated from di ∈ S′ compared to
the ’ground truth’ of si ∈ S (here, di is the hypothesis string,
while si is the reference string). We note the WER of the
pair of streams before they are mixed and again after they are
separated. The difference between the WER is thus calculated,
and if the difference is ≤ 0.15, we assign 1 as a target variable,
else we assign 0.

As an example, consider again the pair of streams in Table
II; assume that the WER before mixing and after separation
is shown in Table IV. The average WER, W̄ , is calculated as
follows:

W̄ =
1

2
∗ ((di − si) + (d(i+1)− s(i+1))) (7)

where si ∈ S and di ∈ S′, and s(i+1) ∈ S and d(i+1) ∈ S′

represent the WER of the respective stream before mixing and
after separation. The average difference in WER represents the
loss of audio signal between the original streams si, s(i+1) ∈
S and their respective decomposed streams in di, d(i+1) ∈ S′.
The target variable is then assigned as follows:

target label =

{
1 if W̄ ≤ 0.15

0 if W̄ > 0.15
(8)

At the end of this process, each pair of adjacent streams
in S have been summarized into one observation as shown in
Table III, and using S′, a target variable has been assigned
as shown in Equations 7 and 8. We now proceed to use this
feature vector matrix to determine feature importance.

C. Feature importance

To determine which features are most influential in enabling
high quality speech separation, we trained several models to
predict WER using our selected features. The importance of
the features for the models to make the prediction informs us
of their importance in the speech separation model.

The following models were trained:
1) Logistic Regression
2) Decision Trees
3) Support Vector Machine (SVM)
4) XGBoost
5) AdaBoost
There are several ways to extract feature importance from

models, but it was important that the method be model agnostic



TABLE II: Example adjacent stream features in fS

Audio
file

Gender
2 or more
speakers?

Background
noise

Pitch
max

Pitch
min

Intensity
max

Intensity
min

stream1.wav M No Music 527.22 90.57 78.57 22.96
stream2.wav F Yes None 597.80 70.02 78.76 31.74

TABLE III: Observation with features fM

Gender
2 or more
speakers?

Background
noise

Pitch
min

Intensity
min

Pitch
diff.

Intensity
diff.

1 1 15 70.02 22.96 527.78 55.80

TABLE IV: Calculating target variable
WER before

mixing
WER after
separation

stream1.wav 0.10 0.20
stream2.wav 0.17 0.24

so that the results could be easily compared. Common methods
like Gini impurity are not applicable to non-tree based models.
Ultimately two techniques were chosen, Permutation impor-
tance and SHapley Additive exPlanations (SHAP7) values [3],
[12].

Permutation importance works by shuffling one feature at a
time and evaluating the subsequent loss in model accuracy to
determine how valuable that information is for making correct
predictions. The psuedocode in Algorithm 1 shows the general
method for computation.

Algorithm 1: Permutation importance algorithm

1 function Permutation importance (m,D);
Input : predictive model m trained on dataset D
Output: importance if of each feature f of D

2 Compute reference accuracy s of m on D
3 for f of D do
4 for k in 1,...,K do
5 Shuffle column f to generate D̃f,k

6 Compute score sf,k of m on D̃f,k

7 end
8 end
9 Return:

if = s− 1
K

∑K
1=1 sk,f

SHAP values are used to explain why a particular data point
resulted in the model producing a particular prediction. It uses
a game theory approach to measure each feature’s contribution
to a final outcome. The method involves constructing many
variants of a given model, but with different subsets of the
available features. In this way, the overall contribution of a
single variable can be understood while controlling for the
other features in the set.

Figure 2 shows a graphical representation of the total con-
tributions of each feature for each datapoint to result in their

7SHAP is a game theoretic approach to measure how much each feature
contributes to the output of a machine learning model.

corresponding WER prediction. To predict feature importance,
the sum is taken of the feature magnitude over all samples in
the dataset. This tells us which variables that contributed the
most to predictions for the samples in our set.

Fig. 2: SHAP Values

For the two importance calculation techniques, we generated
scores for each feature in the dataset from each of the five
models tested. The scores were then aggregated across the
models to provide rankings per technique. The aggregation
was scaled according to each model’s accuracy of prediction
on the dataset. Table V shows the rankings for the top four
variables on the Voxceleb dataset.

TABLE V: VoxCeleb Results

Rank Permutation
Importance

SHAP
Results

1 diff intensity diff intensity
2 intensity min pitch min
3 diff pitch intensity min
4 pitch min diff pitch

VI. GENERALIZABLITITY OF CHOSEN FEATURES

In order to understand to what degree the results are general-
izable, the experiment is performed on both the VoxCeleb and



Mozilla CommonVoice dataset. Since the majority of Voxceleb
is recorded via interviews, the recording equipment tends to be
high quality and the environment varies between live audience
and clean recording rooms. Mozilla CommonVoice however, is
user submitted by volunteers. The recording equipment likely
varies widely, with laptop microphones likely making up a
majority of the equipment. Likewise, the environment of the
recordings may be noisy or relatively clean, but is unlikely to
be studio recording conditions.

The experiment was repeated with Mozilla Common Voice,
features extracted, models trained, feature importance calcu-
lated. The resulting ranking of the top four variables in Table
VI shows the same four variables as Voxceleb. The ranking
is different, but suggests that the separation model is most
sensitive to these variables and that the results hold true across
distinct datasets.

TABLE VI: Mozilla CV Results

Rank Permutation
Importance

SHAP
Results

1 intensity min intensity min
2 pitch min pitch min
3 diff pitch diff pitch
4 diff intensity diff intensity

VII. CONCLUSION AND FUTURE WORK

In summary, this study meticulously explored feature-
based speech separation, leveraging pre-trained deep neu-
ral networks. Utilizing the VoxCeleb corpus and the Sep-
Former model features such as intensity and pitch consis-
tently emerged as influential markers for successful separation
across various supervised learning models. The application
of permutation importance and SHAP values quantified their
significance, affirming their pivotal role in achieving high-
quality speaker separation and reinforcing their robustness
across different datasets, as validated by experiments on the
Mozilla CommonVoice dataset.

In conclusion, the study provides substantial evidence re-
garding the crucial features governing speaker separation out-
comes, emphasizing the potential impact of strategic feature
selection on separation efficacy. These findings lay a founda-
tion for further advancements in audio source separation, with
implications for improving real-world applications such as
emergency call processing, call-center scenarios, and political
debates where multiple speakers may speak simultaneously.
The identified features’ robustness and generalizability un-
derscore their relevance and promise in the continued evo-
lution of speaker separation technologies. Looking forward,
future research endeavors in perceptual analysis, automation,
dataset diversity, and algorithmic innovation aim to push the
boundaries of audio source separation, contributing to the
development of more sophisticated and efficient techniques.
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