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Abstract

Automatic Speech Recognition (ASR) systems are used in the
financial domain to enhance the caller experience by enabling
natural language understanding and facilitating efficient and
intuitive interactions. The increasing use of ASR systems re-
quires that such systems exhibit very low error rates. The
predominant ASR models to collect numeric data are large,
general-purpose models provided commercially — Google
Speech-to-text (STT), or Amazon Transcribe — or available
through open source (OpenAI’s Whisper). Such ASR mod-
els are trained on hundreds of thousands of hours of audio
data and require considerable resources to run. Despite re-
cent progress in such large speech recognition models, in this
work we highlight the potential of smaller, specialized “mi-
cro” models. Such light models can be trained perform well
on number recognition specific tasks, competing with gen-
eral models like Whisper or Google STT while using less
80 minutes of training time and occupying at least an or-
der of less memory resources. Also, unlike larger speech
recognition models, micro-models are trained on carefully se-
lected and curated datasets, which makes them highly accu-
rate, agile, and easy to retrain, while using low compute re-
sources. We present our work on creating micro models for
multi-digit number recognition that handles diverse speaking
styles reflecting real-world pronunciation patterns. Our work
contributes to domain-specific ASR models, improving digit
recognition accuracy, and maintaining privacy of data. An
added advantage of our micro-models is their low resource
consumption allows them to be hosted on-premise, thereby
keeping private data local instead of sending it to an exter-
nal cloud for processing. Our results indicate that our micro-
model makes less errors than the best-of-breed commercial
or open-source ASRs in recognizing digits (1.8% error rate
of our best micro-model versus 5.8% error rate of Whisper),
and has a low memory footprint (0.66 GB VRAM for our
model versus 11 GB VRAM for Whisper).

Introduction
Today, many financial transactions take place over the
phone. In this setting, deploying accurate speech recognition
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systems is crucial for precise digit recognition. The accu-
racy with which machine learning models recognize multi-
digit utterances plays a pivotal role in shaping the efficiency
of various financial applications. For example, a scenario in
which a voice-enabled transaction involves a series of digits
that are mistranscribed due to the limitations of a domain-
general model, may result in financial discrepancies or au-
thentication failures. Figure 1, shows an example of text
where the utterance ”twelve six” is transcribed incorrectly as
”well fix” because of large domain of the large ASR model
whereas it is transcribed correctly because of small domain
of micro ASR model. The consequences could range from
minor errors to significant financial discrepancies and bad
user experience. Moreover in this context of voice-enabled
financial transactions, the importance of deploying models
that go beyond mere efficiency to ensure precise digit recog-
nition becomes paramount.

Figure 1: Figure shows the effect of large and micro lan-
guage model on ambiguous inputs. Due to large vocabu-
lary the large language model can lead to erroneous outputs
whereas the micro models can generate an output which is
within the range of provided vocabulary

The significance of accurate digit recognition extends be-
yond efficiency to include privacy considerations - partic-
ularly in financial domains that deal with credit numbers,



CVV or account numbers. Accurate STT APIs like Google-
speech APIs require sending the data to an external cloud
that can have significant privacy concerns. This is where the
imperative for socially responsible, privacy-aware micro-
models comes into play. Consider a micro-model specifi-
cally tailored for financial contexts and adept at recogniz-
ing spoken digits with a heightened emphasis on privacy.
Such a model not only ensures the accurate processing of
financial transactions but also prioritizes the protection of
personal financial information by avoiding an external API
call. Further by addressing pronunciation variations and po-
tential misinterpretations, this micro-model exemplifies the
fusion of accuracy and efficiency. In this work, we focus on
training a multi-digit micro-model that can handle diverse
production of digits with high accuracy and computational
efficiency.

There is a noticeable research gap in the open-source
datasets available for training models on spoken digit recog-
nition. Most prior datasets either focus solely on single-digit
utterances or predominantly on multi-digit utterances where
digits are spoken individually. Our work bridges this gap by
including a wide range of sequences representing various
digit lengths and variations in pronunciation. For example,
“653” may be spoken as “six hundred fifty-three,” “six fifty-
three,” or “sixty-five three.” Specifically, the curated dataset
is comprised of 14,000 utterances and aims to address the
lack of diversity in the production of spoken digit data. This
dataset is publicly available1 and can be used by the research
community to train speech recognition models to recognize
credit card and account numbers - cases in which the data is
not generally available due to its highly sensitive nature.

Morever, the utilization of external APIs may raise
privacy concerns due to the potential training of the ASR
model on user data2 . While external providers often assert
non-ownership of private data, the process of training
their models relies on large datasets, including user inputs.
This indirect exposure of sensitive information to external
entities poses a risk to user privacy; published literature
documents successful identification of individuals from
data used to train models [Xu, Cohn, and Ohrimenko2023,
Yin et al.2023, Fredrikson, Jha, and Ristenpart2015,
Ravindra and Grama2021]. In contrast, the adoption of
micro-models in an in-house capacity offers a more
controlled and socially-responsible environment. With
micro-models, organizations maintain ownership and
oversight of the training process, reducing the likelihood of
inadvertent data exposure. This approach not only enhances
privacy but also provides greater transparency and control
over how user data is handled, mitigating the potential risks
associated with external API usage.

Our contributions can be summarized as follows:

1. We highlight the potential of micro-models over domain-
general models for specialized use cases.

2. We create — and make publicly available at the URL

1The dataset can be downloaded from
https://github.com/chiraguic/SpokenMultiDigitVarietyDataset

2A representative example of a privacy statement is
https://cloud.google.com/speech-to-text/docs/data-logging

shown in the footnote — a dataset for multi-digit recog-
nition that can handle diverse articulation of digits for
upto five-digit numbers.

3. We train two micro-models that outperform domain-
general commercial ASR models like Google and Whis-
per [Radford et al.2023] in terms of recognition accu-
racy, and require a fraction of resources to train and de-
ploy them.

The rest of the paper is structured as follows: We briefly
summarize how ASR systems work in the next section. Re-
lated work and experiment details follow to outline the cu-
ration of our dataset and the techniques used for training the
models. We discuss the results next followed by a conclu-
sion.

ASR Background
The objective of an Automatic Speech Recognition (ASR)
system is to convert an audio signal into its corresponding
text, known as a transcript. The transcript is subsequently
used by back-end systems to drive a specific application. As
an example, consider an account holder calls into a finan-
cial institution, and the system challenges her by asking an
account number. The ASR captures the acoustic signal cor-
responding to user’s utterance as she speaks out the digits
and converts, or decodes, it to a textual transcript consisting
of the digits spoken during authentication. The transcript is
then presented to a back end system that retrieves the ac-
count based on the digits contained in the transcript.

ASR systems typically include an acoustic model, a lan-
guage model, and a decoder. This system processes speech
input to produce the most accurate transcription of spoken
words. In short, the feature extraction module isolates per-
tinent features from the speech signal, minimizing unnec-
essary noise. The acoustic model captures speech acoustics
and transcribes the extracted audio features into a sequence
of context-dependent phonemes, often using deep neural
networks in contemporary models. The language model de-
termines the likelihood of specific words or word sequences
based on surrounding context. Finally, the decoder utilizes
the acoustic model, grammar, and language model in tan-
dem to generate probable word sequences for a given audio
frame, with the highest probability word sequence being the
final text output. A comprehensive exploration of deep neu-
ral network-based ASR systems is presented in the work of
Roger et al. [Roger, Farinas, and Pinquier2022].

To delve further into the process, the input waveform un-
dergoes segmentation into small frames, typically 25 mil-
liseconds in duration, and from these frames, specific fea-
tures are extracted. Commonly utilized features include
Mel-Frequency Cepstral Coefficients (MFCCs), Cepstral
Mean and Variance Normalization (CMVNs) representing
audio content, or i-Vectors capturing speaker or utterance
style. The selected features must effectively capture human
speech characteristics while minimizing unwanted noise.
This compression of the audio signal results in a sequence
of fixed-length vectors through feature extraction. Subse-
quently, the acoustic model predicts the phoneme spoken in
each audio frame. The acoustic model is tasked with mod-



eling speech acoustics and transcribing the extracted audio
features into a sequence of context-dependent phonemes.
Training acoustic models involves Deep Neural Networks
(DNNs) processing extensive datasets, typically comprising
thousands of hours of human-transcribed audio data.

Finally, in (ASR) systems, a lexicon or dictionary links
each word to its phonetic representation. This mapping helps
convert predicted phonemes into words and, ultimately, full
sentences. The language model plays a crucial role in deter-
mining the likelihood of specific words or word sequences
based on surrounding context. This context is typically gen-
erated by neural networks or n-gram models trained on ex-
tensive textual datasets. The decoder then utilizes the acous-
tic model, grammar, and language model together to gener-
ate word sequences for a given audio frame. The final text
output is the word sequence with the highest probability.

Related Work
Several open-source datasets exist in the realm of speech
processing for digit recognition, each having its own set of
strengths and limitations. The MNIST Speech Dataset cu-
rates a dataset by embedding spoken digit recognition into
the well-known MNIST format [mni]. However, a notable
constraint of this dataset is that it is focused solely on single-
digit numbers. It does not address the challenges posed by
multi-digit sequences containing a great deal of variation
in production style. For instance, numbers like “480” can
be produced as “four hundred eighty” or “four hundred and
eighty,” variations that are not accounted for in the dataset.

In contrast, the Snips SLU Dataset, Fluent Speech Com-
mands dataset, and SLURP dataset focus on speech com-
mand recognition [Saade et al.2019, Lugosch et al.2019,
Bastianelli et al.2020]. While these datasets contribute to
real-world applications, they don’t encompass the nuances
of recognizing numbers spoken in varied forms or numbers
embedded within sentences. These limitations are shared
by the Google Speech Commands Dataset, which excels in
recognizing short spoken commands but falls short in ade-
quately handling multi-digit variations and numbers spoken
within larger contexts.

Furthermore, even when datasets cover multi-digit ut-
terances, they lack variety. For example, the Timers-and-
such Dataset offers an intriguing avenue for exploring
temporal event classification and spoken timer detection
[Lugosch et al.2021]. However, it exhibits limitations, such
as fewer utterances for numbers from ten to nineteen (10-
19), which are crucial for recognizing the complete spectrum
of five-digit numbers. Additionally Aurora Dataset focuses
on standalone multi-digit utterances [aur]. However, a key
limitation of the Aurora dataset is that it records the digits
spoken one at a time, potentially not addressing the varia-
tions in pronunciation seen in real-world scenarios.

Domain-specific datasets, like those detailed above,
as well as domain-specific ASR models have garnered
significant attention in recent research. For instance,
[Jha2021], targets domain-specific models for cases where
domain-specific data is available in different languages.
[Bekal et al.2021] focuses on the accurate recognition of
domain-specific words and named entities (i.e. addresses,

names, etc.) More recently, [de Vos and Verberne2023]
present experiments using a domain-specific language
model for political speeches. [Dong et al.2023] propose a
complex but effective speech recognition method based on
a domain-specific language speech network (DSL-Net) and
a confidence decision network (CD-Net). They test their re-
sults on various open-source medical domain datasets.

Unlike the prior work outlined in this section, we focus
on creating a domain-specific micro-model for commonly
occurring digit recognition tasks that can be used in any
situation, for instance, the financial domain. While exist-
ing datasets and models trained on them contribute signif-
icantly to digit recognition endeavors, there remains a gap
in handling standalone multi-digit utterances spoken in di-
verse ways. Addressing this gap is particularly useful to en-
hance caller experiences in financial transactions where ac-
curate and flexible multi-digit recognition is vital. Our pro-
posed dataset and the associated micro-model trained on it
aim to tackle this challenge, providing improved accuracy
and adaptability to variable pronunciations.

Experimental Details
Dataset

We curated the proposed dataset by harnessing data avail-
able from the Timers and Such [Lugosch et al.2021] and
LibriSpeech datasets [Lugosch et al.2019]. The Timers and
Such dataset is an open-source dataset of spoken English
commands for common voice control use cases involving
numbers. It has four intents, corresponding to four com-
mon offline voice assistant uses: SetTimer, SetAlarm, Sim-
pleMath, and UnitConversion. The dataset is fairly small,
with 2,151 non-synthetic utterances, but it is considered use-
ful for experimentation. The LibriSpeech dataset is a corpus
of approximately 1000 hours of read English speech with a
sampling rate of 16 kHz. It is derived from read audiobooks
from the LibriVox project and has been carefully segmented
and aligned . Our objective was to meticulously extract spo-
ken numbers from sentences present in these datasets, ulti-
mately constructing a comprehensive repository for flexible
multi-digit recognition. Extending prior work on single and
double-digit numbers, we focus on numbers up to five digits
in length. We compiled an exhaustive vocabulary compris-
ing all tokens necessary for articulating five-digit numbers,
encompassing numerical digits and number-related phrases.
These tokens include single digits from zero to nine, double
digits tokens from ten to nineteen, and tokens like “twenty”,
“thirty,” etc. as shown in Table 1. In addition to digits, to-
kens representing key numerical expressions like ”hundred”
and ”thousand” constitute the foundational building blocks
for constructing complex numeric sequences. Further, we in-
clude the tokens “and”, “Oh”, and “O” as they are often used
interchangeably with the digit zero in conversational speech.

Subsequently, we employed state-of-the-art Whisper
models [Radford et al.2023] to glean precise timestamps
of these tokens from the audio samples. The Whisper
model delivered a detailed JSON file containing words and
their corresponding timestamps (for e.g. ”words”: [ ”text”:



”eighty”,”start”: 0.5, ”end”:0.9,”confidence”: 0.90 ])3. We
first identified the timestamps corresponding to the words
of interest (for e.g. ”four”-0:38-0:40s, ”five”-0:40-0:42, etc).
We then use the timestamp information for the each word
to combine continuous sequences of digits (for e.g. ”four
five”-0:38-0:42) to assemble all multi-digit numbers articu-
lated within the sentence. Finally, after extracting all rele-
vant words from the audio, we append one second of silence
at the beginning and end of the audio files. This step en-
sures that the individual audio files are of sufficient length
for training.

List of Tokens in the Vocabulary
One Eleven Twenty
Two Twelve Thirty

Three Thirteen Forty
Four Fourteen Fifty
Five Fifteen Sixty
Six Sixteen Seventy

Seven Seventeen Eighty
Eight Eighteen Ninety
Nine Nineteen Hundred
Oh O Ten

Thousand And Zero

Table 1: Vocabulary

The Kaldi toolkit [Povey et al.2011] was used for train-
ing the ASR model. Kaldi is a free, open-source toolkit for
speech recognition research. It is considered best-of-breed
open source ASR training toolkit and has been used as the
foundation for many commercial ASR systems.

Train and Test Datasets To train the model we also in-
cluded the Aurora dataset [aur] to ensure that the model can
recognize sequential as well as non-sequential digits. Refer
to the appendix about brief introduction on Aurora 5 dataset.
We adopted a train-test ratio of 90:10 over the entire dataset.
The dataset boasts a cumulative duration of about 4 hours.
To standardize the audio data and ensure compatibility with
phone audio recordings, all files were converted to an 8 kHz
sample rate and encoded in 16-bit PCM format. The contri-
bution from each dataset is shown in Table 2. The number of
audio files and corresponding hours of data contributed by
each of the datasets is specified.

Dataset Train files (hrs) Test files (hrs)
Aurora-5 7421 (2.30) 1355 (0.28)
Timers-and-such 2502 (0.61) 211 (0.10)
Librispeech 2721 (0.72) 230 (0.12)

Table 2: Dataset Information

3It was observed that JSON outputs often contain a slight offset
in the start and end times for words, sometimes capturing a very
small portion of the previous or next word. Nevertheless, it appears
that this has minimal impact on the performance of the model.

Micro-model Architecture
We trained two neural network based digit models- Micro-
model-dense and Micro-model-light with varied architec-
tures. The dense model is more accurate but demonstrates
slightly higher latency during decoding.

The input of the Micro-model-dense network comprises
two components: an i-vector input with a dimensionality of
100 and a raw input with a dimensionality of 40. The net-
work commences its transformation by applying an affine
operation using an LDA matrix to the concatenated spliced
frames of the i-vector, thereby reducing its dimensionality
while retaining essential information. The subsequent stages
involve a series of carefully orchestrated layers that progres-
sively extract and manipulate features. A fully connected
layer, characterized by ReLU activation, batch normaliza-
tion, and dropout, introduces non-linearity and regulariza-
tion of the data. Following this, a sequence of 13 time-delay
neural network (TDNN) layers are introduced, leveraging
factorized structures for computational efficiency and cap-
turing temporal dependencies. These TDNN layers, each
comprising 1,536 dimensions with a bottleneck dimension
of 160 and varying time strides, enable the network to cap-
ture intricate temporal patterns in the input data. Continu-
ing the transformation, a linear layer processes the features,
and a pre-final layer undertakes non-linear transformations
with dimension reduction, thereby molding the data to match
the requirements of specific modeling tasks. Here, the ar-
chitecture bifurcates into two distinct branches. One branch
caters to chain modeling, involving another pre-final layer
and an output layer. The pre-final layer reduces the dimen-
sions from 1,536 to 256, while the output layer generates
predictions without the application of log-softmax transfor-
mation. This configuration is tailored for tasks necessitat-
ing sequence labeling. Simultaneously, the second branch
addresses cross-entropy training, encompassing analogous
pre-final and output layers. These layers facilitate learning
through cross-entropy loss, and the output layer produces
classifications.

The Micro-model-dense neural network architecture,
while achieving a lower Word Error Rate (WER4), neces-
sitates a slightly higher decoding time and demands more
space. In an effort to strike a better balance between ac-
curacy, space efficiency, and decoding time, we opted for
a simplification of the neural network, dubbing it Micro-
model-light. A significant adjustment involved a meticu-
lous reduction in the number of TDNNF layers from 13 to
4, effectively mitigating continuous and resource-intensive
weight multiplication operations. Additionally, recognizing
the potential impact of excessively high dimensions on the
space and time intensity of the model, we deliberately chose
to judiciously decrease the dimensionality of the network’s
internal representations from 1,536 to 1,024. This architec-
tural streamlining resulted in reduction in decoding time,
which is more noticeable for CPU based decoding. For GPU

4The WER is a widely accepted standard measure of ASR per-
formance; it is expressed as a value between [0, 1.0] or as a per-
centage. Lower values are better. Please see the Appendix for more
information on the WER.



based decoding, the difference is marginal. The simpler de-
sign leads to slight increase in the WER.

Micro-model-
light

Micro-model-
dense

WER 2.6% 1.8%
Model size (GPU, VRAM) 0.64 GB 0.66 GB
Model size (CPU, RAM) 0.16 GB 0.20 GB
Latency (RTF) on CPU 0.00343 0.01432
Latency (RTF) on GPU 0.00061 0.00060

Table 3: Performance comparison of Micro-model-light
and Micro-model-dense on a test set of 1,149 utterances
of 3,646.3 seconds total duration.

Results and discussion
Table 3 presents the performance comparison between two
micro-models. The models are tested on a dataset compris-
ing of 1,149 utterances with a cumulative duration of 3,646
seconds. We assess the models for CPU and GPU based
inference tasks. The CPU used for testing is an AMD 16-
Core Processor 2.9 GHz CPU with 263 GB RAM. The GPU
used is an NVIDIA A100 with 80GB VRAM. Micro-model-
light demonstrates a Word Error Rate (WER) of 2.65% and
a smaller model size, resulting in a faster decoding time and
lower latency measured in terms of the Real-Time Factor
(RTF5). By contrast, Micro-model-dense achieves a lower
WER of 1.84% but has a larger model size, resulting slower
decoding, specially on the CPU.

We also compare our models to three popular, pre-trained
models: Whisper-Small, Whisper-Large, and Google-STT
(Speech-to-text); Whisper is the best-of-breed of open
source ASR engines while Google-STT is the best-of-breed
for commercial ASR engines. The results are shown in Table
4. For the Google-STT, we specifically configured the con-
text to transcribe only numeric content. This tailored config-
uration allowed us to assess the performance of the Google
Speech API in accurately transcribing numerical sequences,
providing insights into its suitability for applications involv-
ing voice-enabled transactions, numerical data processing,
and similar scenarios. Whisper-Small is a 244 million pa-
rameter model that requires at least 2 GB VRAM, while
Whisper-Large is a 1.5 billion parameter model requiring
about 11 GB VRAM. As can be observed in the table, the
WER of our micro models are superior to those of the com-
mercial engine (Google-STT) and the open source alterna-
tive (Whisper). In terms of RTF, we note that the RTF of
our micro-models shown in the table are at least three or-
ders of magnitude less than the RTF of Whisper, which we
measured at 0.84 for Whisper-Small and 0.89 for Whisper-
Large. We were not able to measure the RTF for Google-
STT because it is a cloud service, using a RESTful API in-

5The Real-Time Factor (RTF) metric used to measure the speed
of a system that processes an input signal (such as audio) in real
time. Values under 1.0 are preferred. Please see the Appendix for
more information on RTF.

terface, and in such a setting, the network latency will dom-
inate the RTF.

Model WER
(%)

RTF (meas-
ured on GPU)

Whisper-Small 5.8 0.84
Whisper-Large 4.6 0.89
Google-STT 2.9 N/A
Micro-model-light 2.6 0.00061
Micro-model-dense 1.8 0.00060

Table 4: Word Error Rates

Both of our micro models outperform the commercial en-
gines. This indicates that small vocabulary micro models
have comparable, or better accuracy compared to large vo-
cabulary domain-general models. It is noteworthy that com-
mercial engines are trained on hundreds of thousands of
hours of audio and require sizable resources to perform de-
coding. Whisper is a good example, it is trained on 680,000
hours of audio [Radford et al.2023] over a period of many
days on a cluster of NVIDIA A100 GPUs. The large version
of Whisper occupies nearly 11 GB VRAM on a GPU com-
pared to the 0.66 GB of VRAM for our micro-models. By
contrast, our micro models require low memory resources
to run, many orders of magnitude less training data and take
less training time. (Our model training time was about 1 hour
on 1xA100 NVIDIA GPU.) An added advantage of a low-
memory footprint is multiple models can be loaded simulta-
neously in memory and an application can choose the appro-
priate model to use for decoding. For example, a credit card
CVV consists of three numbers requiring less variation in
pronouncing the three numbers. Most users when prompted
to say the CVV will utter each number independently and
in sequence. Therefore, a 3-digit CVV model that is highly
trained to recognize individual numbers spoken in sequence
can be used to collect the CVV while a different model can
be used to collect the ZIP code where there is more vari-
ability in uttering the five numbers corresponding to the ZIP
code.

To better understand the difference in WER between each
model, we conducted a word-error analysis summarized in
Table 5. We found that Google, at times, fails to capture
single-digit utterances and decodes the short utterances as
blank outputs. However, we found that the Google model
performs well on multidigit utterances. Whisper-Small and
Whisper-Large also exhibited frequent errors on single- and
two-digit utterances, with these errors becoming less fre-
quent for multi-digit numbers. Making more errors on short
duration utterances is a known deficiency of Whisper mod-
els, since it is trained on longer audio segments (30s) making
decoding shorter utterances challenging as the audio may
not have enough context [Radford et al.2023]. Clearly, our
micro-models do not suffer from this problem and are highly
accurate for short audio utterances.

In closing, we note that our micro-models are not general-
purpose models; they are highly specific to a particular do-
main, namely digit recognition. Thus, using them in any



other domain will cause high WER.

Conclusion
In this work, we present a domain-specific Kaldi ASR
micro-model for accurate five-digit number recognition,
which can outperform large, domain-general ASR models.
We also present a diverse dataset for spoken digit recog-
nition which adds to the existing resources in this domain,
especially for high-privacy use cases like financial transac-
tions where credit card or account numbers cannot be used
directly for training. We trained micro-models that give low
WER and highlighted the tradeoffs between the density of
network, space occupied by the model and time for decod-
ing the utterances. Both of our micro-models outperformed
the best-of-breed commercial and open-source ASR systems
while using less compute resources. Due to their inherent
agility and low compute requirements, the micro-models can
be run on-premises, thereby alleviating the need for sending
sensitive data to a third party for decoding and transcription.
These efforts underline the utility of micro-models in spe-
cialized and lightweight ASR applications, offering efficient
and accurate solutions for specific tasks.

Future work will involve extracting digits from other data
sources and improving the model’s performance on out-of-
distribution audio sequences. Moreover, our approach can
also be applied to noisy datasets. Recognizing the signifi-
cance of channel characteristics in real-world scenarios, our
methodology lays the groundwork for future investigations
into incorporating training audio that closely mimics the
production environment. This avenue of exploration holds
the potential to further enhance the robustness of our model,
making it well-suited for applications in diverse and chal-
lenging acoustic conditions.
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Error Type Google STT Whisper-Small/Large Micro-model
dense/light

Single-digit (0-9)
transcription and
detection errors

Frequent blank outputs
and occasional errors
(e.g. ”Two” as ”too” )

Detection with more
frequent errors
(e.g. ”three” as ”spree”,
”nine” as ”fine”)

Occasional blank outputs

Two-digit (11-99)
transcription errors

Occasional errors
(e.g. ”Twelve” as ”well”)

More frequent errors
(e.g. ”sixteen” as ”sixty”) Highly accurate

Multi-digit numbers>99 errors Highly accurate
Occasional errors
(e.g. ”hundred” as ”dread”,
”thousand” as ”housing”)

Highly accurate
except rarely
missing short words
like ”and”, ”two”etc.

Table 5: Error analysis of Automatic Speech Recognition systems: Google STT exhibits single-digit errors, Whisper-
Small/Large shows increased errors for two-digit numbers, and micro-models demonstrate high accuracy with occasional
multi-digit errors, particularly in recognizing short words

Chapter of the Association for Computational Linguis-
tics.

Appendix

Word Error Rate (WER)
The WER [Zechner and Waibel2000] is a widely accepted
standard measure of ASR performance; it is expressed as a
value between [0, 1.0] or as a percentage. ASR systems seek
to minimize the WER. It is represented as the ratio of the
number of edits required to transform a hypothesis string
into a reference string to the total number of words in the
reference string, or

WER =
S +D + I

N
(1)

where S = number of substitutions required to change the
hypothesis string to the reference string, D = number of dele-
tions required, I = number of insertions, and N = total num-
ber of words in the reference string. Lower values of WER
are preferred since they indicate an ASR model that makes
less errors.

Real-Time Factor (RTF)
The Real-Time Factor (RTF) metric used to measure the
speed of a system that processes an input signal (such as
audio) in real time. Since ASR systems process speech and
produce a transcript, the RTF can be defined as

RTF =
T

D
(2)

where T = Time to transcribe the audio file and D = Du-
ration of the audio file. Values of RTF < 1.0 are preferred
since values ≥ 1.0 indicate that the decoding (transcribing)
an audio file takes a larger amount of time than the duration
of the audio itself.

Aurora-5
Aurora-5, introduced in 2006, extends the Aurora dataset se-
ries, focusing on hands-free speech input in real-world set-
tings like rooms and cars. The dataset investigates additional

distortion effects, including additive background noise and
the impact of transmitting speech over a cellular network.
Built upon the TIDigits database, Aurora-5 offers a valuable
resource for assessing speech recognition system perfor-
mance in complex, everyday scenarios, contributing to the
refinement of speech processing technologies in telecom-
munications. Its exploration of hands-free input and cellular
transmission adds a practical dimension to evaluating auto-
matic speech recognition systems.


