Disambiguation and Error Resolution in Call
Transcripts

Jordan Hosier*!, Vijay K. Gurbani*, Neil Milstead*
*Vail Systems, Inc.
{jhosier,vgurbani,nfnm} @vailsys.com
"Northwestern University
jhosier@u.northwestern.edu

Abstract—Ambiguity is inherent to human language and poses
a unique challenge both to human listeners as well as natural
language processing (NLP) systems. Ambiguity is understood as
a type of uncertainty which allows for more than one plausible
interpretation of utterances. Ambiguity can introduce problems
for NLP systems designed to, for example, execute machine trans-
lation, determine sentiment, and perform automatic speech recog-
nition (ASR). We seek to identify and resolve mis-transcriptions
that arise from phonetic ambiguity and degraded acoustic signals
in 87,000 call transcripts. We first present an alignment algorithm
which identifies mis-transcriptions generated by ASR systems
when compared against verified human transcriptions. This
method not only allows for a general evaluation of ASR per-
formance but also highlights specific areas of difficulty for such
systems (e.g. “considerate” vs. “consider it”’). We further present
an error resolution algorithm which, given a mis-transcribed
word, uses contextual cues to suggest a more likely, phonetically
similar word. This work has the potential to not only evaluate
existing ASR systems, but also to immediately improve their
performance.

Index Terms—homophone disambiguation, automatic speech
recognition, text processing

I. INTRODUCTION

Ambiguity is understood as a type of uncertainty which
allows for more than one plausible interpretation of an utter-
ance. Despite the potential for processing difficulty, ambiguity
is ubiquitous in language [1]. Context plays an important role
in the process of disambiguation—what is ambiguous in one
context may not be ambiguous in another. Take, for example,
the exchange in (1).

(1) “Mine is a long and sad tale!” said the Mouse, turning
to Alice and sighing.
“It is a long tail, certainly,” said Alice, looking with
wonder at the Mouse’s tail, ‘but why do you call it sad?”
(Lewis Carroll, Alice’s Adventures in Wonderland)

The exchange in (1) demonstrates a particular kind of
phonetic ambiguity - homophones, which are defined as words
having the same pronunciation but different meanings and/or
spellings. Ambiguity can also extend beyond the word level.
Take, for example, the two utterances in (2).

(2) a. The stuffy nose can lead to problems.
b. The stuff he knows can lead to problems.

978-1-7281-0858-2/19/$31.00 ©2019 IEEE

In conversational speech, pauses between discrete lexical
items can be imperceptible or non-existent, which can make
word segmentation difficult. The phrases “stuffy nose” and
“stuff he knows” are oronyms—sequences of words that
sound the same but have different meanings. Such ambiguities
not only present difficulties for humans, but are particularly
challenging in Natural Language Processing (NLP) settings,
such as Automatic Speech Recognition (ASR). Ambiguities
can result in errors in ASR generated text, which in turn
affect the accuracy of downstream textual analyses. While
ambiguities remain a challenge for NLP systems, there exists
little work targeted at identifying and resolving homophone
confusion in English (but see [2] for related approaches in
Chinese).

We present an algorithm that, given an error in an ASR
generated transcript, suggests higher probability, phonetically
similar replacements based on training a corpus of 87,000
ASR generated customer survey transcripts. The algorithm is
constructed from the following building blocks: (1) a word
embedding dataset for all the words contained in the training
corpus, (2) a dataset containing all tri-grams present in the
corpus and their frequencies, and (3) a Phonetic Encoding
algorithm which is used to determine phonetic similarity
between lexical items.

The current work advances efforts in big data research in the
following two ways. First, we identify potential areas of diffi-
culty in ASR engines introduced by homophones and oronyms,
and second, we present a novel error resolution algorithm that
uses a number of filters to increase the accuracy of the text
generated by the ASR. Our approach allows for more robust
language modeling for large text corpora generated by an ASR
engine. This work also demonstrates the need for a human in
the loop approach, as our algorithm requires human-generated
transcripts to identify mis-transcriptions.

II. BACKGROUND
A. Motivation

Recent advances in the field of speech processing have led
to improved performance of ASR systems. Nonetheless, such
systems are far from perfect and often produce errors [3].
These ASR errors are a result of both intrinsic ambiguities
as well as variation present that is not properly accounted for
in the system’s speech models (idiosyncratic talker properties,

differing accents, etc.) Thus, transcription errors are a result
of ambiguous speech regions that contain acoustical and/or
contextual confusability [4]. Recognition errors impact the
validity of analyses and applications that rely on the resulting
text, such as machine translation, information retrieval, etc.

It is functionally impossible to resolve all potentially am-
biguous utterances without incorporating infinite world knowl-
edge. Nonetheless, traditional lexicons in NLP settings assume
that words can be defined by an enumerable set of parameters
[5]. As a result, when NLP tasks are faced with ambiguity, an
additional effort of disambiguation is needed.

For example, in an ASR setting, if the system encounters
an ambiguous word (such as a word that has homophonous
competitors), the system must select the most appropriate
word available based on its perception of the word that was
uttered - a process driven by matching phonetic cues with
contextual information. This requires that such systems specify
the contexts in which words are likely to appear, which
depends greatly on the context in which such systems are
trained and deployed.

To satisfactorily extract insight from ASR generated data,
it is important that the content of such data be reliable. Take,
for example, a speech-to-text task in which the resulting text
is subjected to some further analysis, such as translation. If
the word “seller” is uttered, it is possible that the ASR system
will erroneously interpret the token as its homophone, “cellar”
as opposed to the intended “seller”. Thus, subsequent analyses
performed on the generated text can potentially yield incorrect
results. Developing a system that can perform ambiguity
resolution, in this context, allows for more accurate text which
can be used to deploy more robust language models.

B. Related Work

Our approach to ASR error detection and correction relates
to other recent work in word embeddings for ASR detection,
such as Ghannay et al. [6] who evaluated the performance of
acoustic word embeddings to detect homophones and errors
and label each word in a corpus as either error or correct using
a feed-forward neural network model. This method, much like
our own, included features that contain information about high
frequency tri-grams, word embeddings, and lexical features
(such as word length). Unlike Ghannay et al. [6], who use
acoustic word embeddings to identify homophones, we use a
combination of phonetic encoding and traditional word2vec
embeddings to approximate both semantic and phonetic simi-
larity of words.

There have been other, similar human-in-the-loop ap-
proaches to ASR error resolution, including Huggins-Dains
and Rudnicky [7] which presented a graphical interface for
correcting errors in the output of a speech recognizer. Through
the application, users can “pull apart” regions to reveal word
suggestions similar to the original ASR word suggestion.
We suggest a similar approach, wherein users input a word
and the application generates a rank-ordered list of similar
words. Thus, much like [7] we present an ASR post-processing

algorithm which processes and subsequently improves upon
the output of an ASR engine.

III. PROBLEM FORMULATION

Given some ASR generated text, such as the text in (3a), the
algorithm should suggest higher probability, similar sounding
alternatives for any mis-transcribed words - in this case,
“consider it.” The result would be a correct transcript, as in
(3b).

(3) a. He was very kind and very consider it.

b. He was very kind and very considerate.

We intend to target cases such as (3) in the following ways:

o Build and evaluate an algorithm capable of resolving
homophone confusion and other mis-transcriptions in
ASR text derived from customer survey responses.

« Identify areas of difficulty for the ASR engine.

o Produce more accurate transcripts.

IV. METHODOLOGY
A. Data

The subsequent analyses are based on textual data derived
from customer call surveys. The data, in its original form,
consisted of .wav files, which were then used as input for
a commercial ASR Engine. Our analyses began with the
resulting textual data which consists of 87,000 call surveys
varying in length from one word to approximately 300 words.

A subset of this data, which we call the verification data,
was also transcribed by human listeners. The verification
set consisted of a 1,900 element subset of the same 87,000
customer survey responses used to generate ASR generated
transcripts. We use this verification data as an accuracy
benchmark, both to highlight errors in the ASR transcripts
as well as to verify the accuracy of our algorithm. Resulting
is a dataset of 1,900 surveys for which we have both human
verified transcripts as well as ASR generated transcripts (as in
Table I). The audio files consisted of customers leaving voice
survey responses about their experience with the call center
agent. The survey was free form, where the customer could
respond in any way they saw fit.

B. Alignment

To highlight discrepancies between the verified transcripts
and the ASR generated transcripts, we estimated the best
alignment of the two transcripts for each survey. We estimate
the best alignment using the Needleman-Wunsch Algorithm
[8], which finds the minimal set of insertions, deletions, and
substitutions needed to transform the verified transcript into
the ASR transcript. From these alignments, we extract the
implied set of word errors made. For example, if “informal to”
was transcribed instead of the correct utterance, “informative”,
the resulting error would be “informal to” — “informal”.

The resulting error dataset contained 2,648 unique error
types with a total of 6,438 errors made. There were an average
of 4.4 errors per survey transcript. The highest frequency error
is the deletion of filler words with the most frequent being the
deletion of “uh”, which occurred 705 times. The second most

I\S]urvey ASR Generated Transcript Human Verified Transcript

umber
2265 He was tentative and quick. He was attentive and quick.
2266 She was very nice very polite very informal to. | She was nice very polite very informative.
2267 She was very healthy. She was very helpful.

TABLE I: Example data for the 1,900 call survey transcripts.

common error type is the deletion of grammatical endings
(i.e. “she’s” — “she”, “helped” — “help”). We do not
consider these types of errors for resolution as filler words do
not contribute to the interpretation of the utterances. We ignore
errors related to grammatical endings as these morphemes
result in different tenses of the same word. Often times such
words are reduced to a core root as a data prepossessing step.
Thus, for our purposes, we consider only substitution errors
(i.e. “card” — “car”, “bill” — “bail”) that do not include
errors related to grammatical endings.

C. The Algorithm

The algorithm takes as input a word embedding for each
word in the transcript corpus, counts for all tri-grams that ap-
pear in the corpus, the mis-transcribed word, and surrounding
context words. For example, in the sentence in (3), the context
words are “and very” and “it” while the mis-transcribed word
is “consider.” The following sections further detail the various
components of the algorithm.

1) Word Embedding: Word embeddings are used to identify
similarities between words in a corpus by predicting the co-
occurrence of words. Word embedding models can complete
analogies such as “Man is to woman as king is to queen” [9].
Word embeddings are created by identifying the words that
occur within a “Context Window.” Word embedding models
then calculate how often each word occurs next to every other
word within the context window, after normalizing for overall
word frequency. We built word embeddings based on context
windows with a length of eight words. The resulting data set
allows us to calculate vector similarity of each word in the
corpus. This measure of similarity is analogous to a measure of
word sense similarity. That is, it measures similarity of words
based on how often they occur in similar environments.

2) N-Grams: Calculating word probability is an essential
step towards identifying words in ambiguous environments.
N-grams allow us to assign a probability to each possible next
word in a sequence. A gram is a unit of text of any length
and n specifies how many grams are used in the calculation.
For our purposes, a gram is a word. The algorithm uses a
particular type of n-gram, known as a tri-gram, or a chunk of
text that contains three words.

In this context, the probability of any given word w can be
computed given some history A.

P(wlh) (D

Suppose the history % is “and very” and we want to know
the probability that the next word is “considerate”, as in (3b).

P(considerate|and very) 2)

We estimate this probability by computing relative fre-
quency counts. In the ASR transcript data, we compute the
number of times “and very” occurs and the number of times
it is followed by ‘“considerate.” Formally, we calculate the
following: out of the times we saw h, how many times was it
followed by w, as follows:

C(considerate)

3)

P(considerate|and very) = Cland very)

In Equation 3, C() is the frequency count function. The
result is the probability of “considerate” appearing in this
context.

3) Phonetic Encoding: Word Embeddings allow us to
calculate similarity based on word co-occurrence. Another
important measure of similarity for homophone resolution is
phonetic similarity. We wish to do a homophone lookup on
mis-transcribed words to see if there exists a homophonous
word in the corpus with a higher probability in context.

We do so using a phonetic encoding algorithm. Given a
word or string, the algorithm derives an encoding based on the
sounds contained in the word. Here, we use the match rating
approach - a phonetic encoding algorithm developed for the
comparison of homophonous names [10]. Such algorithms are
far from perfect, but serve as a good approximation and avoid
having to phonetically transcribe every word in the corpus.
The result of the application of this algorithm can be seen in
(4), as applied to “consider it” and “considerate.”

(4) a. consider it = CNSDR T.
b. considerate = CNSDRT

Given two phonetic encodings, we compare the two strings
and calculate the edit distance between the two tokens. In this
case, we see that the phonetic encoding of “consider it” and
“considerate” are exact matches and thus have an edit distance
of 0 when the space is removed. The decision to remove the
space is a reasonable one, as spaces between words, while
present orthographically, are rarely realized in conversational
speech.

4) Parameters: The model has several parameters which
are used to filter the initial candidate word list for high
probability, similar words (both in terms of vector similarity
and phonetic similarity). The initial candidate word list is
comprised of all words in the corpus that appeared after the
previous two context words. The parameters are as follows:
token length, probability, vector similarity, and phonetic dis-
tance.

Prior to any filtering, the algorithm checks the candidate
list for any exact homophones. The phonetic encoding of

Trigram
Counts

Context Words
Mis-Transcribed *
Word

Candidate
Word Filter

Homophone
Filter

Alternate

Similarity &
Word Suggestion

Prob. Filter | |

Word
Embeddings

Fig. 1: Graphical model of the data pipeline and algorithm components.

the mis-transcribed word, as well as the concatenation of the
mis-transcribed word and the following word, are compared
against the phonetic encoding of every candidate. If there
exits a highly probable exact homophone match, the match
is suggested in place of the mis-transcribed word.

Token length is a parameter used to verify that the suggested
replacement words are a reasonable length when compared
to the mis-transcribed word. This parameter is important
because some of the highest frequency words are function
words and such words are high probability in many contexts.
Further, these words can have overlapping sounds with the
mis-transcribed words. We want to ensure that short, function
words are not suggested in place of content words. For this
reason, we filter the candidate list for words that are at least
.6x the length of the mis-transcribed word.

We also filter for words that are probability > .001 and
vector similarity > .001. These values can be thought of as
hyper parameters and were approximated using a grid search.
The resulting word list is a refined candidate list. We then sort
the word suggestions based on three parameters: probability,
vector similarity, and phonetic distance.

An example of the structure of a candidate word list is
displayed in Table II, for the test case “and very consider
it” Although the correct candidate, “considerate” does not
have the highest probability or vector similarity, it has a
phonetic distance of zero and is thus selected as the suggested
replacement for the mis-transcribed word.

Candidate Probability Vector Phonetic

Token Similarity | Distance
professional 0.053 0.00307 5
very 0.053 0.0024 5
concise 0.0013 .0018 3
considerate 0.0016 0.0028 0

TABLE II: Candiate list for “and very consider it,” where the
selected candidate is considerate.

V. EVALUATION RESULTS

The algorithm is deployed in the form of a Shiny Web Ap-
plication'. In its current form, the app requires user interaction.
The user inputs the previous two words, the candidate word,
and the following word. It then generates word suggestion(s).
As Figure 2 demonstrates, the algorithm is successful when
tested on the “consider it” vs. “considerate” example.

We manually tested the app on a subset of 500 surveys for
which we had verification data. Among these transcripts, the
algorithm successfully resolved 60.3% of the errors of interest
(95% CI [.469, .738]). Recall that we are not interested in
resolving errors that involve the deletion of filler words or the
dropping of grammatical endings. Table III shows examples of
areas where the algorithm successfully recovered the correct
utterance.

The algorithm successfully suggests alternates beyond in-
stances of homophone confusion. The algorithm not only

IThe Shiny Web App can be accessed here:
https://jrhosier.shinyapps.io/Transcript_App/

ASR

Verified Algorithm’s Error Resolution

She was very nice very polite very informal to

She was very nice very polite very informative

informal to — informative

She was very healthy

She was very helpful

healthy — helpful

I was really sad thank you

I was really satisfied thank you

sad — satisfied

She was very lean in to work with me

She was very willing to work with me

lean in — willing

She was person to talk to and that’s it

She was pleasant to talk to and that’s it

person — pleasant

TABLE III: Examples of the algorithm’s error resolutions.

Please type previous words here... Please type incorrect word here...

and very consider

Please type next word here...

it

and very ...
considerate

Fig. 2: Preview of the interface of the web app.

searches for probable homophones, but also suggests other
probable words with overlapping phonemes. This flexibility
allows the algorithm to catch instances such as ‘“healthy”
— “helpful” as these two words, while not homophonous,
do share sounds. There are many such instances where an
algorithm that relied solely on homophony would fail.

There are, however, instances of replacement errors that
the algorithm cannot resolve. Those errors largely fall in four
categories: 1) low probability replacement words, 2) highly
dissimilar replacement words, 3) incomplete sentences, and 4)
extremely dissimilar words. Examples of each of these errors
are displayed in Table IV.

The algorithm at times fails to suggest words that are
lower probability than the mis-transcribed word, particularly
when the words are not exact homophones as in the case
of “efficient” — “sufficient”. The word “efficient” is high
frequency across the dataset, and is highly probable in this
context. Thus, in these instances, the algorithm suggests a
number of other, lower probability candidates and does not
always suggest the correct alternative.

The algorithm also has difficulty when the correct replace-
ment word and the mis-transcribed word are highly dissimilar.
In the case of “make a payment/human”, the training data did
not have enough instances of “make a payment” to have this
tri-gram be high enough probability to suggest “payment” in
this case.

The third example in Table IV demonstrates a case where
the context is ill-defined due to the use of a sentence frag-

ment. Such instances are also difficult for the algorithm to
capture. Finally, there exist some instances where the ASR
transcription is almost entirely incorrect. In these instances,
where the context is not only ill-defined, but also inaccurate,
the algorithm is unable to generate word suggestions.

VI. CONCLUSION

This work has three primary contributions in BigData ef-
forts. First, we present an objective evaluation of an ASR
engine through the alignment of ASR generated transcripts
with verified human transcriptions. The result is a well-defined
vocabulary of ASR errors which provides insight into areas of
difficulty for the ASR engine and allows for the evaluation of
our algorithm.

Our algorithm not only successfully performs homophone
resolution, but a more general error resolution based on
word vector similarity, probability in context, and phonetic
similarity. This algorithm can be implemented such that error
resolution might be performed automatically or with the
assistance of human approval or selection. In this way, our
algorithm can be used in a speech-to-text pipeline to yield
more reliable transcripts.

In the future, we intend to expand the algorithm to include
automatic error detection. The current work serves as a first
step towards automatically identifying and resolving errors in
transcripts. A necessary next step involves identifying likely
errors in these transcripts such that the algorithm can suggest
likely replacements.

We would also like to expand the training set to include
more data. We are also interested in testing the algorithm’s
performance in highly constrained contexts. For instance, if
the transcript data is exclusively made up of individuals paying
their bills over the phone, could this constrained context
bolster the algorithms ability to generate correct replacements?
This algorithm can be used as a complement to the output
of any ASR engine. If the training vocabulary is relatively
well-defined, the algorithm has the potential to increase the
accuracy of transcripts generated by an open source ASR
engine.

ACKNOWLEDGMENT
We acknowledge the effort of Neetu Gurbani, Ann Smetana,

and Benjamin Burkhardt for generating transcripts from audio
files used in our work.

REFERENCES

[1] Davis, Matthew H., William D. Marslen-Wilson, and M. Gareth Gaskell.
“Leading up the lexical garden path: Segmentation and ambiguity in
spoken word recognition.” Journal of Experimental Psychology: Human
Perception and Performance 28.1 (2002): 218.

[2]

[3]

[4]

[5]

[6]
[7]

[10]

ASR Verified Correct Resolution Algorithm Resolution

He was efficient He was sufficient efficient — sufficient efficient — patient
She helped me make a human She helped me make a payment human — payment human — change
Good customer service detective Good customer service attentive detective — attentive detective — active

male — billing problems

male ambulance — billing problems NA

Male oh male ambulance Billing problems oh billing problems

TABLE IV: Examples of transcript errors that the algorithm does not resolve.

Chang, Chao-Huang. ”Corpus-based adaptation mechanisms for Chinese
homophone disambiguation.” VERY LARGE CORPORA: ACADEMIC
AND INDUSTRIAL PERSPECTIVES. 1993.

Vasilescu, Ioana, Martine Adda-Decker, and Lori Lamel. ”Cross-lingual
studies of ASR errors: paradigms for perceptual evaluations.” LREC.
2012.

Vasilescu, Ioana, et al. ”Cross-lingual study of ASR errors: on the role of
the context in human perception of near-homophones.” Twelfth Annual
Conference of the International Speech Communication Association.
2011.

McShane, Marjorie, Sergei Nirenburg, and Stephen Beale. ”An NLP lex-
icon as a largely language-independent resource.” Machine Translation
19.2 (2005): 139-173.

Ghannay, Sahar, et al. ”Acoustic Word Embeddings for ASR Error
Detection.” INTERSPEECH. 2016.

Huggins-Daines, David, and Alexander I. Rudnicky. "Interactive asr er-
ror correction for touchscreen devices.” Proceedings of the 46th Annual
Meeting of the Association for Computational Linguistics on Human
Language Technologies: Demo Session. Association for Computational
Linguistics, 2008.

Needleman, Saul B., and Christian D. Wunsch. “A general method
applicable to the search for similarities in the amino acid sequence of
two proteins.” Journal of molecular biology 48.3 (1970): 443-453.
Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. “Linguistic regu-
larities in continuous space word representations.” Proceedings of the
2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. 2013.
Moore, Gwendolyn B. Accessing individual records from personal data
files using non-unique identifiers. Vol. 13. US Department of Commerce,
National Bureau of Standards, 1977.

