
Efficient and verifiable responses using Retrieval Augmented
Generation (RAG)

Henry Liang, Yu Zhou, and Vijay K. Gurbani

hliang@vailsys.com,yzhou@vailsys.com,vgurbani@vailsys.com

ABSTRACT
The rise of large language models (LLMs) like ChatGPT has greatly

enhanced the efficiency of everyday tasks through automation.

However, the deployment of LLMs for tasks such as responding

to Request-for-Proposals (RFPs) is hindered by deficiencies like

hallucinations and lack of response provenance. For such tasks, the

aim of an automated response is to generate precise answers that

can still be quickly reviewed and corrected by a human; therefore

it is critical to optimize the system such that relevant source doc-

ument sections are identified for as many questions as possible,

and all relevant contexts are attributed correctly; this makes LLMs

alone insufficient for this task. We present an improved Retrieval

Augmented Generation (RAG) architecture for automated RFP com-

pletion that enhances relevant content generation and significantly

reduces manual effort in drafting responses. The proposed improve-

ments are two-fold: we present a novel text embedding scheme

that combines a dense contextual embedding with a sparse statis-

tical embedding for document retrieval, and we improve on the

provenance of the generated response by presenting an algorithm

that accurately provides the document page numbers as references

when generating the answers. The practical deployment of this so-

lution highlights its potential for automatic RFP completion, as well

as its ability to act as an architecture for applications in various do-

mains with differing complexity levels, especially when efficiency,

accuracy, and verifiable responses are paramount.

KEYWORDS
LLM, RAG, RFP, hybrid retrieval, hybrid embedding

1 INTRODUCTION
Recent works have started to explore the augmentation of large-

language models (LLMs) with localized data sources to generate

relevant and provable answers to user queries. Such Retrieval Aug-

mented Generation (RAG) systems [6] show superior performance

compared to using only a pre-trained model [1]. While LLMs have

demonstrated remarkable capabilities, their application in special-

ized enterprise tasks — such as automatically responding to Request-

for-Proposals (RFPs) — still faces notable challenges. RFP is a criti-

cal application and the LLM response needs to be efficient, free of

hallucinations, accurate, and verifiable as it establishes a contract

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

AI-ML Systems Conference’24, October 2024, Baton Rouge, LA, USA
© 2024 Association for Computing Machinery.

ACM ISBN 979-8-4007-1161-9. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

between an enterprise and a customer. To address these challenges,

this paper introduces an improved RAG architecture designed to

automate the RFP completion process more effectively. The RFP

application is a good use case for RAG because it is very important

to ensure that LLMs do not generate unpredictable responses; not

only are these responses customer-visible, but more importantly,

these responses can be legally binding and may form the basis of a

contract. Many enterprises have archival RFPs that can be mined for

contextual knowledge on how to answer the target question. Our

architecture does not eliminate human-in-the-loop, but it dramati-

cally reduces the time required for a human to review – and correct

– the answers, compared to answering each question manually
1
.

Contributions: Concretely, this paper makes two novel contribu-

tions:

(1) We combine a dense contextual embedding (e.g., BAAI Gen-

eral Embedding (BGE embedding) [11]) with a sparse sta-

tistical embedding (e.g., Term Frequency-Inverse Document

Frequency (TF-IDF) embedding [9]), to produce a hybrid

embedding for efficient retrieval. It is demonstrated that this

hybrid retrieval is superior compared to dense retrieval in

isolation.

(2) The provenance of an answer generated by the LLM through

the RAG process is established by providing the reference to

a source attribute (certain page in a document) from which

the answer was synthesized; the complexity here lies in re-

constructing the document and identifying a page after the

document has been pre-processed and split into chunks.

This system is efficient because the hybridmodel produces enhanced

embeddings that reduce no-context cases (i.e., cases where the infor-

mation being sought is not found in the documents retrieved), and

increases efficiency; it is verifiable because the source attribution to

each generated response is annotated, allowing the human-in-the-

loop to quickly ascertain the veracity of a generated answer. The

techniques and architecture described in this paper can be used for

any enterprise application that demands high levels of precision

and accountability. The code developed in this work is publicly

available at https://github.com/vail-systems/RAILS-AI-ML-2024.

The rest of this paper is organized as follows: Section 2 positions

our contributions in the context of existing work on using RAG

in LLM; Section 3 presents the components used to construct the

enhanced RAG system, and Section 4 enumerates the datasets and

the experimental setup. Section 5 presents a discussion on the

results; we conclude in Section 6.

2 RELATEDWORK
Various studies have explored enhancing retrieval mechanisms

to improve performance on knowledge-intensive tasks. Guu et al.

1
While the number of questions asked in an RFP vary, we have observed RFPs con-

taining 400-800 questions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

AI-ML Systems Conference’24, October 2024, Baton Rouge, LA, USA Liang, Zhou, and Gurbani

[2] introduced Retrieval-Augmented Language Model Pre-Training

(REALM), which trains the retriever using a performance-based

signal from unsupervised text. However, this method is computa-

tionally expensive. Adapting the model to a proprietary document

corpus requires retraining to leverage the specific knowledge con-

tained in those documents. Additionally, if the corpus is continually

changing, the benefits of previous training efforts can be dimin-

ished, requiring frequent updates to the retriever. This can further

increase complexity, whereas the hybrid retrieval method intro-

duced in this paper does not require additional training.

Ramos [7] examined the application of TF-IDF to identify words

in a corpus that are most relevant for use in queries. The study

demonstrated that the TF-IDF algorithm excels in identifying and

prioritizing words that are unique or relatively uncommon in the en-

tire corpus yet frequent in specific documents. However, it exhibits

limitations in addressing synonyms and word variations and cap-

turing semantic relationships between words. These shortcomings

could significantly diminish its effectiveness when applied to larger

document collections. The hybrid retrieval method proposed in this

paper builds upon the TF-IDF algorithm by integrating it with an

embedding that captures the semantic relationships between words,

circumventing some of the major limitations of TF-IDF.

Furthermore, Jalilifard et al. [3] proposed a method called Se-

mantic Sensitive TF-IDF (STF-IDF), which enhances the traditional

TF-IDF approach by incorporating semantic information from word

embeddings. The STF-IDF method iteratively adjusts TF-IDF scores

based on the cosine similarity between word2vec embeddings and

the context of the most relevant terms. However, the word2vec

model only provides static, context-independent word embeddings

suitable for simpler tasks where individual word meanings are suf-

ficient. The hybrid retrieval method builds on this approach by

using a more sophisticated embedding model (BGE). Utilizing con-

trastive learning and transformer architecture, the BGE embeddings

capture deeper semantic nuances, rendering it highly suitable for

applications such as responding to RFPs, which demand a deeper

understanding of textual context and semantics [11].

3 ARCHITECTURE
The architecture (Figure 1) of the RFP completion system improves

upon the RAG architecture with the two main contributions of this

paper: the hybrid retriever, and the Document Page Finder. This

system is structured into four distinct yet interconnected compo-

nents: a retriever, a vector database, a generator, and the Document

Page Finder, each playing a critical role in the system.

Figure 1: Architecture Diagram

3.1 Hybrid Retriever
The hybrid retriever component takes the user’s question to query

the vector database, where documents are stored as high-dimensional

vectors representing semantic embeddings. It surfaces the most rel-

evant documents by employing cosine similarity scoring, which

measures the angle between the query vector and each document

vector. This effectively gauges semantic similarity, ensuring that

the retrieved documents are contextually aligned with the user’s

intent. After computing similarity scores, the retriever ranks all

documents by relevance and selects the top five documents, which

are returned as context for the final response generation.

The process of generating these embeddings for retrieval is a

critical step that significantly influences the efficiency and accuracy

of the retriever’s operations. In this paper, two embedding schemes

are compared. The first is a dense contextual embedding, repre-

sented by the output of the bge-large-en-v1.5 model (BGE [11]),

which is specifically designed to capture deep semantic meanings

from text data. This model is pre-trained using RetroMAE [10]

and trained on large-scale pair data using contrastive learning [11].

The second scheme uses TF-IDF embedding in conjunction with

the BGE embeddings (hybrid embedding). TF-IDF is a statistical

algorithm that measures term importance by multiplying the term

frequency with the inverse document frequency. Such an algorithm

works well for surfacing terms best for document content identifi-

cation (i.e. the terms that have high term frequency but low overall

collection frequency) [8].

More formally, let𝑀𝐵 ∈ Rm x n
be an 𝑛−dimensional embedding

matrix generated from BGE for 𝑚 documents; BGE vectors are

1,024 dimensions, thus 𝑛 = 1, 024. Further, let 𝑀𝑇 ∈ Rm x k
be an

𝑘−dimensional vector generated by TF-IDF, where 𝑘 >> 𝑛. Because

embedding vectors produced by TF-IDF may have more dimensions

than their BGE counterparts, we used singular value decomposition

(SVD [5]) to constrain the TF-IDF vectors to be of the same size as

those produced by BGE as depicted by Eq.(1):

𝑀𝑇
𝑆𝑉𝐷−−−−→ 𝑀

′
𝑇 (1)

where

𝑀
′
𝑇 = 𝑈𝑝Σ𝑝𝑉

𝑇
𝑝 (2)

Here,𝑈 , Σ, and𝑉𝑇
are the resulting component matrices from SVD

obtained from 𝑀𝑇 and constrained to the first 𝑝 columns, where

𝑝 = min(𝑘, 𝑛). With this constraint in place, the hybrid embedding

matrix, 𝑀𝐸 ∈ Rm x n
, is produced by combining the normalized

rows of the BGE and SVD-constrained TF-IDF embeddings matrices

as described below:

𝑀𝐸 [𝑖] = 𝛼
𝑀𝐵 [𝑖]
| |𝑀𝐵 [𝑖] | |

+ (1 − 𝛼)
𝑀
′
𝑇
[𝑖]

| |𝑀 ′
𝑇
[𝑖] | |

,∀𝑖 ∈ {1..𝑚} (3)

An embedding weight, 𝛼 , is chosen to emphasize either 𝑀𝐵

or 𝑀
′
𝑇
. For the work described in this paper, we set 𝛼 = 0.50 to

represent the average of𝑀𝐵 and𝑀
′
𝑇
. In general, 𝛼 can be adjusted

to optimize the results.

In this hybrid embedding, TF-IDF captures term frequency and

importance by analyzing the exact matching of terms and their

Efficient and verifiable responses using Retrieval Augmented Generation (RAG) AI-ML Systems Conference’24, October 2024, Baton Rouge, LA, USA

distribution across the documents while BGE hones in on deep

semantic meaning and contextual information, understanding the

nuance and relationship beyond exact term matches. By combining

the embeddings, we simultaneously leverage precise term-level

information from TF-IDF and rich contextual understanding from

BGE, potentially resulting in a robust and comprehensive text rep-

resentation. Note that, although we select BGE as a representative

dense embedding model in this work, in practice, the hybrid em-

bedding in Eq.(3) can be constructed using the output of any dense

contextual embedding model for 𝑒𝐵 .

3.2 Vector Database
The main function of the vector database is to store either dense em-

beddings or hybrid embeddings depending on the retrieval method,

and to efficiently search for stored embeddings that are most similar

to that of a query. In addition to the embeddings themselves, the

vector databases also store relevant metadata, such as file name,

node ID, and the document text chunks associated with these em-

beddings.

3.3 Generator
The generator component is powered by an LLM, in this study the

Mixtral 8x7B instruct model [4]. The model excels in generating

high-quality, fluent text that closely mimics human writing styles.

This is essential for creating RFP responses that are correct in

content and professional in tone. Moreover, due to its instruction-

based training, the model is particularly effective at understanding

the context provided by the retriever and processing it according

to the provided instructions [4]. This ensures that the generated

responses are relevant and accurately aligned with the RFP.

The model receives context relevant from the retriever, which

includes the top five documents selected based on their relevance

to the query. The LLM processes these inputs to synthesize and

generate a coherent response. To enhance the model’s understand-

ing of the context and its role, system prompts and context prompts

are given to the model to constrain its output.

3.4 Document Page Finder
The Document Page Finder improves the response provenance and

ensures a human can quickly verify the generated responses. When

a text chunk is retrieved and used by the generator to produce

a response, it may seem trivial to determine which page of the

source document the chunk comes from by comparing the dense

embedding of the chunk with that of each document page under the

assumption that the embedding captures the contextual information

of the text. However, this approach is often inaccurate because a

topic may span many pages in a document. Moreover, recall that the

PDFs are converted to text files during chunking, causing a change

in formatting and loss of metadata (filenames, page numbers, etc.),

thereby rendering a simple reverse search impossible.

Thus, this study proposes to use TF-IDF embedding for reverse

searching of page numbers (Algorithm 1). First, PDF documents

are segmented by page and stored in a PDF database. Upon user

query input, the Document Page Finder uses themetadata (filename)

associated with the relevant context documents to subset the PDF

database and select the candidate pages. The TF-IDF vectorizer is

fitted on, and applied to, these candidate pages (line 6). The same

TF-IDF vectorizer is applied to each relevant document used as

context for a response, and cosine similarity between the context

document and PDF pages is computed to rank page similarity (lines

7 to 9). The page with the highest similarity score is returned. This

process ensures that the corpus of relevant context documents has

the same vocabulary as the candidate documents.

Algorithm 1 Document Page Finder

Require: 𝑝𝑑 𝑓 _𝑑𝑏 ← set of all PDF documents chunked by page

1: procedure DocPageFinder(𝑐ℎ𝑢𝑛𝑘𝑠) ⊲ Set of relevant chunks
used to generate response

2: 𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒_𝑑𝑖𝑐𝑡 ← {}⊲ Dictionary where each element has

a score and page number

3: for each 𝑐 in 𝑐ℎ𝑢𝑛𝑘𝑠 do
4: if 𝑐 in 𝑝𝑑 𝑓 _𝑑𝑏 then
5: 𝑝𝑑 𝑓 _𝑠𝑢𝑏𝑠𝑒𝑡 ← SELECT(𝑝𝑑 𝑓 _𝑑𝑏, 𝑐.𝑓 𝑖𝑙𝑒𝑛𝑎𝑚𝑒)

6: 𝑡 𝑓 𝑖𝑑 𝑓 _𝑝𝑎𝑔𝑒𝑠 ← TF-IDF(𝑝𝑑 𝑓 _𝑠𝑢𝑏𝑠𝑒𝑡 .𝑡𝑒𝑥𝑡)

7: 𝑡 𝑓 𝑖𝑑 𝑓 _𝑞𝑢𝑒𝑟𝑦 ← TF-IDF(𝑞𝑢𝑒𝑟𝑦)

8: for each 𝑝𝑎𝑔𝑒 in 𝑡 𝑓 𝑖𝑑 𝑓 _𝑝𝑎𝑔𝑒𝑠 do
9: 𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒 ← COSINE(𝑡 𝑓 𝑖𝑑 𝑓 _𝑞𝑢𝑒𝑟𝑦, 𝑝𝑎𝑔𝑒)

10: 𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒_𝑑𝑖𝑐𝑡 [𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒] ← 𝑝𝑎𝑔𝑒.𝑝𝑎𝑔𝑒_𝑛𝑢𝑚

11: end for
12: end if
13: end for
14: return 𝑝𝑎𝑔𝑒_𝑛𝑢𝑚 from 𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒_𝑑𝑖𝑐𝑡 where 𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒 is

maximum

15: end procedure

If the document is originally a Microsoft Word file, it is converted

into PDF and follows Algorithm 1. If the document is originally a

CSV, the retriever will return the name of the CSV as well as which

sheet it was from.

4 EXPERIMENTAL SETUP
4.1 Dataset
4.1.1 Documents. The dataset of relevant documents to be re-

trieved by a RAG system consists of 147 documents of three differ-

ent types: PDF (84 documents), CSV (61), and Microsoft DOCX (2).

These documents are curated from answers (human-generated) to

past RFPs and, therefore, can enhance the model’s ability to gen-

erate content that adheres to pertinent legal, ethical, and techno-

logical standards. These archival RFPs are instrumental in teaching

the model the structure and tone typically favored in successful

proposals; the system learns to identify key phrases and topics

that are crucial for a compelling response. The 147 documents are

converted to a textual representation from their native document

representation to aid in chunking, a process of dividing the text

corpus into smaller, more manageable segments to enable the RAG

system to process and understand large corpora. In all, 2,212 chunks

are obtained from the documents by using an overlapped chunking

strategy, i.e., each chunk includes some context from the previous

and following chunks. Each chunk has an overlap of 20 tokens
2
.

BGE enforces a token limit of 512 tokens, thus all of the document

2
https://docs.llamaindex.ai/en/stable/optimizing/basic_strategies/basic_strategies/

AI-ML Systems Conference’24, October 2024, Baton Rouge, LA, USA Liang, Zhou, and Gurbani

chunks consisted of at most 500 tokens, with the constraint that no

chunk is truncated by the embedding model.

4.1.2 Test sets. Two RFPs are kept aside to evaluate and compare

the performance of the BGE embeddings with the embeddings

produced by the hybrid model. These test sets are previously com-

pleted RFPs from two different clients. Both RFPs include a mix

of compliance, security, policy, and general questions about opera-

tions. The RFPs from Client A and Client B consist of 104 questions

and 371 questions, respectively. The questions from Client A are

mostly answered with a simple yes/no, while those from Client B

are free-response questions. Thus, the correctness of the response

generated by the system is manually verified by comparing the

machine response against the provided ground truth.

To evaluate the Document Page Finder, a separate manually

completed RFP questionnaire consisting of 13 questions is utilized.

4.2 Models
The following embedding and LLM models are used in this work:

• Dense Retrieval:

– Retriever embedding model: bge-large-en-v1.5

– Generator LLM: mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf

• Hybrid Retrieval:

– Retriever embedding models: bge-large-en-v1.5 for 𝑀𝐵 in

Eq.(3), and TF-IDF for𝑀
′
𝑇
in Eq.(1).

– Generator LLM: mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf

where bge-large-en-v1.5 is a BGE [11] dense contextual embedding

model, and mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf
3
is a quan-

tized Mixtral 8x7b Instruct model [4] for memory and computation

efficiency.

TF-IDF is also used by Document Page Finder to search the exact

location of a retrieved text chunk in the source document.

4.3 RAG System
Due to the proprietary nature of RFP documents and answers, the

entire RAG system, based on LlamaIndex
4
, is deployed along with

all embedding and large language models inside the enterprise

network.

The system is initialized either with dense retrieval or hybrid

retrieval method. Chunking is performed first for all documents

as described in Section 4.1.1, then for each chunk either a dense

embedding or a hybrid embedding is generated according to the

initialization parameter, and stored in the vector database.

At inference time, for each RFP question, the retriever generates

an embedding corresponding to the retrieval method of the system,

then searches for the top 5 most relevant context chunks in the

vector database based on cosine similarities of the embeddings.

Subsequently, the generator incorporates these 5 context chunks

into the LLM input prompt for response generation. Finally, before

the response is returned to the user, the Document Page Finder

is invoked for each context chunk to find the corresponding page

number in the source document. This procedure allows the system

to return not only a suggested response but also links to the specific

pages of relevant source documents for manual verification.

3
https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF

4
https://docs.llamaindex.ai/en/stable/api_reference/chat_engines/condense_plus_context/

5 RESULTS
5.1 Dense Retrieval
As described in Section 4.1.2, two client questionnaires are used as

test sets for evaluation. The ground truths for Client A are binary

Yes or No, whereas answers for Client B are freeform text.

Table 1 shows the results of applying dense retrieval to Client A

dataset, with an overall accuracy of 85.58%. With 5 context chunks

retrieved based on their BGE embedding similarity to that of the RFP

question, the LLM indicates there is no relevant information that

can be used to answer 4 out of 104 questions in Client A set. For the

remaining 100 questions, the system achieves a balanced accuracy

of 67.51%, a precision of 91.30%, and a recall of 96.55% (We report

balanced accuracy due to the class-imbalanced dataset.). However,

the system seems to be biased towards giving "yes" answers: out of

the 89 questions where the ground truth is "yes," the model is able

to predict correctly 94.38% of the time, while only being correct

33.33% of the time when the ground truth is "no." This appears to

be the result of the nuances in human interaction in the training

data for the LLM. Yin et al. [12] discussed how LLMs reflect human

communication traits and cultural norms, suggesting that polite

language in prompts often garners more compliant and effective

responses. It is possible that the polite language in RFP questions

biases the LLM in responding with an affirmative answer.

Ground Truth

RAG Response

Total

Yes No No Context

Yes 84 3 2 89

No 8 5 2 15

Total 92 8 4 104

Table 1: Dense Retrieval for Client A

For Client B, the system achieves an accuracy of 94.07% as shown

in Table 2. The system is not able to find relevant context to provide

answers for 2 out of 371 questions, yielding a no-context rate of

0.53%.

RAG Response

Correct Incorrect No Context Total

Total 349 20 2 371

Table 2: Dense Retrieval for Client B

5.2 Hybrid Retrieval
For hybrid retrieval, the RAG vector database is reconstructed with

the hybrid embeddings (Eq.3) of the same document chunks as

those used in dense retrieval. Moreover, each RFP question entering

the RAG system is also embedded using Eq.3).

The hybrid retrieval performance for Client A is presented in

Table 3. Compared to dense retrieval (Table 1), the overall accuracy

of hybrid retrieval increases from 85.58% to 86.54% while the no-

context rate is reduced from 3.85% to 0.96%, resulting in a precision

Efficient and verifiable responses using Retrieval Augmented Generation (RAG) AI-ML Systems Conference’24, October 2024, Baton Rouge, LA, USA

of 89.47% and recall of 96.59%. The balanced accuracy is 64.96%. The

slight decrease in precision and balanced accuracy can be attributed

to the additional incorrect answers in the process of eliminating

no-context cases.

Similar improvement is seen in Table 4 for Client B, where the hy-

brid retrieval achieves an accuracy of 95.15% with relevant context

found for all RFP questions in the test set.

Ground Truth

RAG Response

Total

Yes No No Context

Yes 85 3 1 89

No 10 5 0 15

Total 95 8 1 104

Table 3: Hybrid Retrieval for Client A

RAG Response

Correct Incorrect No Context Total

Total 353 18 0 371

Table 4: Hybrid Retrieval for Client B

Table 5 compares the results of hybrid retrieval with those of

dense retrieval; even though the improvement in overall accuracy

is marginal, the reduction in no-context responses is significant:

since each generated response needs to be reviewed by humans

due to the rigorous requirement of RFP, providing links to relevant

document sections are crucial to the process efficiency as well as

verification accuracy. Source document attribution not only helps

reduce the time it takes to manually search for answers for no-

context questions among all source documents in the database, but

also lowers the possibility of overlooking pertinent information by

human reviewers. Therefore, optimizing for reducing no-context

cases via hybrid retrieval is the preferred solution for RFP response

generation, even though it may potentially result in slightly lower

precision.

Client Metric (%) Dense Hybrid

A

Accuracy 85.58 86.54
Precision 91.30 89.47

Recall 96.55 96.59
No-Context Rate 3.85 0.96

B

Accuracy 94.07 95.15
No-Context Rate 0.53 0

Table 5: Metrics Comparison for Client A and B

Using Client A’s RFP, the hybrid retriever was timed and com-

pared to the inference time of the LLM to measure scalability. For

the 104 questions, the retrieval stage latency had a mean of 0.1053s

and a standard deviation of 0.0045s. The inference stage latency had

a mean of 7.9173s and a standard deviation of 3.0022s. Comparing

these statistics, the retrieval stage latency is much lower compared

to the time it takes for the LLM to digest the retrieved documents

and generate a response. The low standard deviation shows that

the retrieval stage latency is relatively stable.

5.3 Discussion
To illustrate the differences between dense retrieval and hybrid

retrieval, a sample RFP question along with the top relevant chunks

identified using either approach is analyzed in Example 5.1. The

precise answer to the question in the relevant chunk is highlighted.

Example 5.1. Question: If the solution stores data, is it encrypted
with AES 256? If no, explain.

Top 3 Chunks from Dense Retrieval (Excerpts):
(1) Authentication factors (passwords, passphrases, or crypto-

graphic keys) that allow access to unencrypted data are

stored securely • 3.6.1) Procedures are defined and imple-

mented to protect cryptographic keys used to protect stored

account data against disclosure and misuse...

(2) Is [redacted] data encrypted in storage? Acceptable options

are logical encryption or disk encryption where access is

managed separately and independently of native operating

system controls. DS-8 C 33.1 If a database is in use, is colum-

n/field level encryption implemented to protect sensitive

[redacted] data (such as SSN, credit card numbers, etc.)? If

response is "no", please confirm that no database is in use.

DS-8.1 C...

(3) Indicate whether disk encryption is used. (yes/no) [redacted]

If “yes,” complete the remainder of 3.4.1.a, 3.4.1.b, and 3.4.1.c.

If “no,” mark the remainder of 3.4.1.a, 3.4.1.b and 3.4.1.c as

“Not Applicable.’ Describe the disk encryption mechanism(s)

in use. [redacted]. For each disk encryption mechanism in

use, describe how the configuration verified that logical ac-

cess to encrypted file systems is separate from the native

operating system’s authentication mechanism. [redacted].

For each disk encryption mechanism in use...

Top 3 Chunks from Hybrid Retrieval (Excerpts)
(1) Audio recorded phone calls are either automatically redacted

of sensitive cardholder data elements, are encrypted with

client-provided public encryption keys (for which [redacted]

personnel do not have access to the associated private keys),

or are stored encrypted with [redacted]-managed asymmet-

ric key pairs for limited durations before being deleted at

per-client defined retention periods...

(2) Key-encrypting keys are stored separately from data-encrypting

keys. Describe how system configurations and key storage

locations verified that, wherever key-encrypting keys are

used: • Key-encrypting keys are at least as strong as
the data-encrypting keys they protect. SQL Database
DEK: AES-256 SQL Database KEK: [redacted] SQL Data-
base Master Key (DMK): AES-256 Call Recording DEK:
[redacted] Call Recording KEK: AES-256...

(3) Departures from this policy will be permitted only if ap-

proved in advance and in writing by the Information Security

Officer.

3. Policy

AI-ML Systems Conference’24, October 2024, Baton Rouge, LA, USA Liang, Zhou, and Gurbani

It is the policy of [redacted] that all sensitive data will be

encrypted while at rest and during transit across public net-

works to protect it from internal and external threats...

In Example 5.1, both dense and hybrid retrieval approaches find

chunks of similar topics, but the hybrid retrieval is able to pinpoint

a chunk containing the exact phrase that is present in the RFP

question. While the dense BGE embedding captures deep semantic

meanings and contextual information, understanding nuances and

relationships beyond exact term matches, the sparse TF-IDF embed-

ding captures term importance and focuses on the exact matching

of terms (e.g., AES 256) and their distribution across documents. By

combining the two embeddings, a more comprehensive text repre-

sentation is created, leveraging both precise term-level information

(from TF-IDF) and rich contextual understanding (from BGE). This

combination results in the correct document being surfaced to an-

swer the question.

5.4 Document Page Finder
An existing manually completed RFP questionnaire consisting of

13 questions is used to evaluate the performance of the novel Docu-

ment Page Finder. Each question is submitted to the RFP completion

system. For a specific question, the page number suggested by the

Document Page Finder is verified manually for each retrieved doc-

ument (these are the original PDF documents).

Although the dense contextual embedding model has already

generated embeddings for each chunk by this point, they are found

to be less robust for mapping the retrieved text chunks to their corre-

sponding PDF pages. Theoretically, the TF-IDF algorithm excels in

identifying the best terms for distinguishing individual documents

relative to the entire corpus. This characteristic renders TF-IDF par-

ticularly effective for locating the corresponding page for a specific

document chunk [7]. In contrast, BGE embeddings are more adept

at capturing and matching semantic meaning, making them less

useful for the Document Page Finder.

Indeed, experiments show that the accuracy of using BGE em-

bedding to find source document page numbers is lower compared

to TF-IDF embedding. Out of the 13 questions, a total of 24 retrieved

documents are PDFs and thus are supported by the Document Page

Finder. The system using TF-IDF achieves 100% accuracy as shown

in Table 6.

Retrieved PDFs

Correct Matches

BGE TF-IDF

24 21 24

Table 6: Document Page Finder Performance

6 CONCLUSION AND FUTUREWORK
A comparative analysis of documents retrieved through dense and

hybrid retrievals reveals that both approaches yield content on

highly similar and relevant topics. The hybrid retriever, employing

a weighted combination of embeddings, integrates the deep con-

textual understanding of the BGE embedding [11] with the ability

of the TF-IDF embedding to identify unique and significant terms.

This combination enhances the efficacy of the hybrid embedding in

retrieving documents that encompass critical terms relevant to the

query, thereby reducing no-context responses for RFP questions.

Additionally, the high-performing Document Page Finder enhances

provenance by providing detailed references for each generated

answer. Moreover, the scalability of this system is not hindered by

the hybrid retriever, and the increase in retrieval time should be

minuscule compared to the time it takes for the LLM to make an

inference when the number of documents increase. These improve-

ments render the RAG architecture more efficient and verifiable,

making it suitable for any enterprise application that demands high

accuracy and accountability.

In this study, the chunk size is selected to align with the token

limit imposed by the BGE embedding model. Given that the gen-

eration of document embeddings is a critical factor for the hybrid

retriever, it can be beneficial to experiment with various chunk

sizes. Such experimentation may capture varying amounts of con-

text within a single vector, thereby facilitating the determination

of the optimal chunk size for achieving the most relevant retrieval

results. Another possible area of optimization is the 𝛼 parameter

shown in Eq.(3). This study uses 0.5 to represent the average of

the BGE embedding and the TF-IDF embedding, but this value can

be optimized according to the use case to find the optimal combi-

nation of dense contextual and sparse statistical embeddings. By

addressing these nuances, future work will significantly contribute

to refining the robustness, impartiality, and accuracy of RAG sys-

tems, thereby enhancing their reliability and applicability in diverse

contexts.

REFERENCES
[1] Wenqi Fan, Yujuan Ding, et al. 2024. A Survey on RAG Meeting LLMs: Towards

Retrieval-Augmented Large Language Models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery Data Mining.

[2] Kelvin Guu, Kenton Lee, et al. 2020. Retrieval Augmented Language Model Pre-

Training. In Proceedings of the 37th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 119). PMLR, 3929–3938.

[3] Amir Jalilifard, Vinicius Fernandes Caridá, et al. 2021. Semantic Sensitive TF-IDF

to Determine Word Relevance in Documents. In Advances in Computing and
Network Communications. Springer Singapore, Singapore, 327–337.

[4] Albert Q. Jiang, Alexandre Sablayrolles, et al. 2024. Mixtral of Experts.

arXiv:2401.04088 [cs.LG] https://arxiv.org/abs/2401.04088

[5] V. Klema and A. Laub. 1980. The singular value decomposition: Its computation

and some applications. IEEE Trans. Automat. Control 25, 2 (1980), 164–176.

https://doi.org/10.1109/TAC.1980.1102314

[6] Patrick Lewis, Ethan Perez, et al. 2020. Retrieval-Augmented Generation for

Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing
Systems (NeurIPS), H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin

(Eds.), Vol. 33. Curran Associates, Inc., 9459–9474.

[7] Juan Enrique Ramos. 2003. Using TF-IDF to Determine Word Relevance in

Document Queries. https://api.semanticscholar.org/CorpusID:14638345

[8] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in

automatic text retrieval. Information Processing Management 24, 5 (1988), 513–
523.

[9] Karen Sparck Jones. 1972. A statistical interpretation of term specificity and its

application in retrieval. Journal of documentation 28, 1 (1972), 11–21.

[10] Shitao Xiao, Zheng Liu, et al. 2022. RetroMAE: Pre-Training Retrieval-oriented

Language Models Via Masked Auto-Encoder. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language Processing. Association for

Computational Linguistics, Abu Dhabi, United Arab Emirates, 538–548.

[11] Shitao Xiao, Zheng Liu, et al. 2024. C-Pack: Packed Resources For General Chinese

Embeddings. In Proc. of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’24). 641–649.

[12] Ziqi Yin, Hao Wang, et al. 2024. Should We Respect LLMs? A Cross-

Lingual Study on the Influence of Prompt Politeness on LLM Performance.

arXiv:2402.14531 [cs.CL] https://arxiv.org/abs/2402.14531

https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://doi.org/10.1109/TAC.1980.1102314
https://api.semanticscholar.org/CorpusID:14638345
https://arxiv.org/abs/2402.14531
https://arxiv.org/abs/2402.14531

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Hybrid Retriever
	3.2 Vector Database
	3.3 Generator
	3.4 Document Page Finder

	4 Experimental Setup
	4.1 Dataset
	4.2 Models
	4.3 RAG System

	5 Results
	5.1 Dense Retrieval
	5.2 Hybrid Retrieval
	5.3 Discussion
	5.4 Document Page Finder

	6 Conclusion and Future Work
	References

