LLM Selection: Improving ASR Transcript Quality
via Zero-Shot Prompting

Grace LeFevre
Northwestern University
Evanston, 1L
gracelefevre@Qu.northwestern.edu

Abstract—When transcribing telephony audio, Automatic
Speech Recognition (ASR) engines often produce noisy output
with high word error rates (WER), which impacts the efficacy
of downstream analyses that process this transcribed text. We
present two experiments demonstrating how an LLM selection
method can be used to improve the quality of telephony-based
transcripts. This involves generating transcripts for a dataset
from multiple ASR engines and prompting an LLM to select
the best ASR transcript from the options. Our results indicate
that our proposed technique approaches the optimal performance
that would be achieved if every transcript was verified against
the corresponding ground truth (the Oracle approach). Overall,
we find that this method can make notable WER improvements
to ASR transcriptions of telephony audio. Further, maximizing
performance gain requires utilizing an appropriate targeted
improvement strategy.

I. INTRODUCTION

An important challenge in ASR systems is the mismatch
of expectations regarding the characteristics of the out-of-
distribution audio data, i.e., a Large-Vocabulary Conversational
Speech Recognition (LVCSR) system where the audio data
for decoding does not correspond to in-distribution audio data
used during training. Most commercial and open-source ASR
engines are trained on audio data obtained from studio-quality
conditions with limited, or no background noise. However,
characteristics of the out-of-distribution data are harder to
control and have the potential to cause the ASR to produce
erroneous transcripts.

For example, a cellular telephone user interacting with an
ASR system will exhibit characteristics reflective of the chan-
nel, like background noise or jitter, because of poor cellular
radio reception. These in turn will cause the ASR system to
make different type of errors: homophone substitution (“there”
vs. “their”’), phoneme substitution (“bat” vs. “pat”), and word
boundary ambiguities (“T scream” vs. “ice cream”). Further,
poor audio quality can also distort prosodic elements of a
speech and make it hard to distinguish fillers and disfluencies
(“ah”, “umm?”, etc.).

When such erroneous transcripts generated by such LVCSR
systems is fed to back-end applications (like intent deter-
mination, call analysis, or sentiment analysis), performance
degrades as does the quality of experience of a user interacting
with such a system. This underscores the importance of
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developing effective methods for improving the quality of ASR
transcriptions of telephony audio. In this work, we explore one
method of using a Large Language Model (LLM) to do so.
Contribution: We present a novel LLM selection method,
using an LLM to select the best ASR transcript for a document
given output of multiple ASR engines. We demonstrate the
usefulness of employing multiple ASRs to perform LLM-
based ASR transcription improvement and apply this approach
to telephony data.

The rest of this paper is structured as follows: Section II
positions our work in the context of surveyed literature, Sec-
tion III describes the datasets and the methodology. Section IV
presents our results and discussion, and Section V concludes
the paper with a summary of our findings and limitations.

II. RELATED WORK

LLM-based generative error correction and rescoring of an
ASR engine’s n-best hypothesis list has shown performance
improvements over baseline rescoring methods, in some cases
surpassing n-best oracle performance [1], [2], [3], [4], [5]. In
all, we contribute to and build on surveyed literature in two
ways:

1. Multiple ASR Engines: Though these approaches have
varied in terms of architectures and prompting strategies used,
their primary focus has been improving the output of a single
ASR engine using LLMs. In contrast, we present a test case
exploring the possibility of achieving generative LLM-based
improvements to ASR output given transcripts produced by
multiple ASRs. More specifically, we apply a zero-shot, in-
context learning approach [6] to the task of selecting the best
ASR output from a set of options generated by different ASRs.

2. Use of I-best hypothesis instead of n-best: A notable
difference in our work when compared to the reviewed lit-
erature is that we do not consider n-best hypotheses, rather,
we only consider the final hypothesis (/-best) from the ASR
engine. We will motivate the reason for this in Section IV-C.

3. Telephony Domain: Notably, prior work does not inves-
tigate LLM-based ASR error correction for audio generated by
4G and 5G cellular phones, typically relying instead on pre-
recorded public datasets like the Airline Travel Information
System [7] (ATIS) and Wall Street Journal [8] (WSJ) corpora.



Even large multi-domain ASR datasets like GigaSpeech [9]
do not include any telephonic audio.

Transcription accuracy is particularly important for tele-
phony data since results are often used for automated customer
service applications. Moreover, the telephony domain is par-
ticularly challenging for automatic speech recognition due to
possible degradations in audio quality when the radio interface
is resource constrained and due to the conversational nature of
the speech. Common disruptions to signal transmission include
packet loss, delay, and repetitions, which interfere with speech
recognition of telephonic audio [10]. Furthermore, speech in
the telephony domain is often spontaneous (not read from a
script) and informal, including frequent self-corrections and
disfluencies [11].

These are all characteristics that make both ASR transcrip-
tion and LLM error correction more challenging. For example,
in some domains LLM-suggested corrections like improving
grammatical errors are desirable and improve performance
[5]. In the telephony domain, however, such grammatical
corrections often may not matter. For example, consider an
automated customer service application; such an application
is still able to extract intent (pay-card) from a grammatically
incorrect transcript ("I want pay my card"). However, if the
ASR encounters a substitution error because of noise on
the cellular channel ("I want to play my part"), the intent
recognition system is unable to extract the correct intent. In
the telephony call center domain, accurate transcripts are more
important than fixing grammatical errors.

III. DATASETS AND METHODOLOGY

A. Datasets

We use two telephony datasets. Both are drawn from the
same context—customers responding to survey questions re-
garding their recent customer service experience—and consist
of short, single-speaker audio files with accompanying human-
annotated gold labels. They are in different distributions, with
the median gold-label wordcount of the second dataset being
significantly shorter than that of the first dataset, as shown in
Table I. Due to the relatively small dataset, we chose to use the
full datasets for analysis over a train/test split, since there is
no need for model training as we are using pre-trained ASRs.

Dataset #1 ‘ Dataset #2

documents 911 918

median word count 16 7
total duration (hours) 3.7 1.0
mean (seconds) 14.7 3.7

TABLE I
DATA DISTRIBUTION.

We use a third dataset to motivate our assertion that using
1-best hypothesis is much more efficient compared to using
n-best hypotheses. The details of this dataset are provided in
Section IV as the dataset is not used in our LLM selection
method discussed in this section.

Dataset #1 | Dataset #2
Whisper 0.108 0.151
Speechmatics 0.158 0.121
Google telephony 0.121 0.152
Empirical min. 0.074 0.078
TABLE II

ASR MODEL PERFORMANCE (WER) ON DATASETS #1 AND #2.

B. ASR Engines

We use three different ASR models in our experiments,
generating three sets of transcripts for both of our datasets.

o Whisper: the medium sized version of OpenAl’s gen-
erative Transformer based encoder-decoder ASR model
[12].!

o Speechmatics: a commercial ASR system utilizing the
traditional two-component acoustic model and language
model.?

o Google telephony: Google Cloud’s speech-to-text model
specifically trained for transcribing telephony audio.’

The performance of these ASRs on both datasets is shown
in Table II. The best-performing ASR model on Dataset #1
is Whisper, achieving a WER of 10.8%. The best-performing
ASR model on Dataset #2 is Speechmatics, achieving a WER*
of 12.1%. This offers further evidence that the two datasets
are in different distributions.

C. LLM Used

In this study, we evaluated two LLM models: Meta’s Llama-
3.1-70B-Instruct® 70 billion parameter model and Mixtral
8x7B sparse mixture-of-experts model®. Preliminary exper-
imentation revealed that the Llama-3.1-70B-Instruct outper-
formed Mixtral in terms of transcript improvement, leading to
its selection as the LLM for the remainder of this work. Specif-
ically, we ran the Llama-3.1-70B-Instruct-Q6_K_L model, 6-
bit quantized, and running on a single NVIDIA H100 with 80
GB VRAM.

D. LLM Selection Method

After obtaining transcriptions from multiple ASR engines
for every audio file in a dataset, our LLM selection method
consists of the following three steps.

1. Calculate empirical minimum WER: Using ground
truth labels, analyze comparative ASR performance on the
dataset. Calculate the empirical minimum WER to determine
whether LLM selection can yield improved performance. The
empirical WER for a document is calculated by choosing the
transcript from one of the three ASR engines that results in
the minimum WER.

Version released on 11.17.2023

Zhttps://www.speechmatics.com/

3https://cloud.google.com/speech-to-text/docs/transcription-model

4The Word Error Rate, or WER, is a widely accepted metric in evaluating
ASR models; the lower the WER, the better the model. Please see the appendix
for further information on calculating the WER.

Shttps://huggingface.co/meta-llama/Llama-3.1-70B-Instruct

Shttps://mistral.ai/technology/#models



2. Prompt LLM to select best ASR transcript: Using
information about the dataset domain, the ASR models, and
their performances on the dataset, prompt an LLM to choose
the ASR transcript most likely to be correct.

3. Develop targeted improvement strategy: Calculate the
overall WER of the LLM-selected transcripts and analyze
which documents in the dataset benefit from the method.
This analysis enables selective application of the method to
a targeted subset of the data.

Further details on these three steps are provided below.
Empirical Minimum WER: Broadly, our approach resembles
an ensemble system where the individual ASR engines can be
modeled as independent base classifiers. For such an ensemble
to perform optimally, the errors from the base classifiers should
not be correlated [13]. To successfully apply an ASR selection
method, LLM-based or otherwise, there needs to be evidence
that the ASR transcripts have complementary patterns of error.
If so, selecting the best transcript for each document can yield
better performance overall than any single ASR.

We quantitatively verified this on our datasets by calculating
the theoretical best performance that could be achieved on the
datasets using an ASR selection approach. Taking the best-
performing (lowest WER) ASR transcript for each document
in a dataset and calculating their overall WER yields the
empirical minimum WER that could be achieved via a selection
method for that dataset. The empirical minimum WER values
for both datasets are shown along with the ASR performances
in Table II. For Dataset #1, the empirical minimum WER is
.034 lower than the best-performing ASR. For Dataset #2, the
difference is even larger at .043 lower than the best-performing
ASR. This demonstrates that significant improvement via a
selection approach is possible for our datasets.

LLM Prompting: We implemented LLM selection of the best
ASR transcript for each document in our datasets by prompting
the instruction-tuned Llama3.1-70B model [14]. We present
results from the best-performing prompt here (the prompt is
shown in Table III7). This prompt included domain-specific
and distribution-specific information, with details on the (1)
customer service context, (2) the ASR model architectures,
and (3) their comparative performance on the data. The LLM
was instructed to choose the ASR transcription most likely
to be true to the original audio file (4). We found this last
inclusion particularly essential, as otherwise the LLM was
likely to choose the transcript that was most grammatically
correct or contained the most standard English.

Targeted Improvement Strategies: Due to the nature of
the method, applying it to full datasets carries the risk of
performance loss, since the LLM could sometimes select a less
correct transcript as the best one. In many use cases, it might
be most useful to target method application to only a subset of
the data. For this reason, we analyze the documents in a dataset
that benefit most from the LLM selection method. This enables

"Table III shows the final prompt used in Dataset #1; the final prompt used
in Dataset #2 was similar with one change: the comparative performance of
ASRs on Dataset #2 is different: in Dataset #2, Speechmatics is the best
performing ASR engine while Google Telephony is the worst performing.

the development of targeted improvement strategies that can
be quickly tested and implemented on additional datasets. In
our results, we discuss two targeted improvement strategies
that were effective on our datasets.

IV. RESULTS AND DISCUSSION
A. Experiment #1

The LLM selection method achieved an overall WER of
0.091 on Dataset #1, an improvement of 0.017 over the best-
performing single ASR (Whisper, .108).

For this dataset, ASR disagreement effectively measures
transcription quality—the more the three ASR engines dis-
agree about the correct transcription, the less accurate they
are all likely to be overall. To measure this, we calculated an
ASR disagreement score for each document by summing the
three pairwise edit distance scores. This enabled us to examine
subsets of the data with higher ASR disagreement.

Table 4 shows the ASR disagreement rate for the doc-
uments. For the 20% disagreement partition—i.e., the 20%
of the documents with the highest disagreement scores—the
WER is the highest. This is expected, as these 20% represents
the fraction of documents with the highest disagreement scores
from the three ASR engines. As the partition size increases, the
WER decreases as documents with lower disagreement scores
are brought into the partition. For the 20% disagreement parti-
tion, the best single ASR WER is 0.277 (Google Telephony);
our method further decreases the WER of this partition by
18.05% to 0.227. For the 50% of the dataset with the most
ASR disagreement, the best single WER is 0.175; our method
further decreases the WER by 17.71% to 0.144. And finally,
when the entire dataset is analyzed, our method decreases the
WER by 15.74%, from 0.108 to 0.091.

These results highlight that the documents with the highest
ASR disagreement benefit the most from the LLM selection
method. This means that focusing on applying the LLM
selection method to documents with high ASR disagreement
is a promising targeted improvement strategy for this dataset.
Since implementing this improvement strategy only requires
disagreement between ASR engines, it can be applied to other
datasets without ground truth.

B. Experiment #2

The LLM selection method achieved an overall WER of
0.119 on Dataset #2. This represents no significant improve-
ment over the best-performing single ASR on the full dataset
(Speechmatics, 0.121).

ASR disagreement was not an effective targeted improve-
ment strategy for Dataset #2. However, some documents in
the dataset do benefit from the LLM selection method—
specifically, the shortest documents. This is shown in Figure
1, which splits the dataset into three bins based on gold-label
word count.

For documents in the shortest bin, the LLM selection
method achieves an overall WER of 0.126, a 0.02 improve-
ment over the best-performing single ASR (Google telephony,
0.146). The same pattern does not hold for the other wordcount



(1) You are a helpful transcription error correction assistant. I have a telephony dataset
consisting of customers answering survey questions about their experience speaking to a
customer service representative.

(2) I transcribed an audio file from this dataset using three Automatic Speech Recognition
models. The first ASR model is Whisper, a generative transformer-based model. The second
ASR model is Speechmatics, a traditional ASR that uses an acoustic model and a language

model. The third ASR model is a Google Cloud model trained to transcribe telephony audio.
(3) Overall, Whisper is the best performing model and Speechmatics is the worst performing
model, but all three models make mistakes sometimes.

(4) Given the transcriptions produced by these ASR models, your task is to choose which
transcription you think is most likely to be the correct transcription. A correct
transcription should be semantically coherent, fit the customer service survey context
described above, and stick as closely as possible to the content of the original audio
file. It is likely that all the transcriptions contain inaccuracies, but please choose
the one you think is most correct. Begin your response with your reasoning and end your
response with your prediction of the correct transcription.
explanation after you state the correct transcription.

Do not include any additional

put "transcription:"

ASR transcription #1: {...}
ASR transcription #2: {...}
ASR transcription #3: {...}

At the end of your response, please

followed by the text of the transcription you selected so I can
easily extract your prediction from your response.

Here are the three ASR-generated transcriptions:

TABLE III
LLM PROMPT. FINAL ROMPT USED TO IMPLEMENT LLM SELECTION METHOD ON DATASET #1.

most-disagreeing x%

100% | 50% | 20%

Whisper  0.108 | 0.175 | 0.305

Speechmatics  0.158 | 0.262 | 0.395

Google telephony  0.121 0.188 | 0.277

LLM selection  0.091 | 0.144 | 0.227

Empirical min.  0.074 | 0.120 | 0.187
TABLE IV

DATASET #1 RESULTS. LLM SELECTION METHOD YIELDED MOST
IMPROVEMENT ON DOCUMENTS WITH HIGHEST ASR DISAGREEMENT.

bins, which show either comparable or worsened performance
of the LLM selection method compared to the best-performing
single ASR. This suggests that wordcount is an appropriate
targeted improvement strategy for this dataset; applying the
LLM selection method to only the shortest documents yields
a performance improvement.

C. I-best vs. n-best hypotheses

Our assertion that /-best hypothesis is superior to n-best
is empirically drawn from the open-source Kaldi ASR toolkit
[15]. The base Kaldi source code contains a method called
SentenceLevelConfidence() that returns float value signifying
the difference between the “best” sentence and the “second-
best" sentence. The best and second-best sentences represent
the best and second-best paths in the decoding lattice. The
return value of the function is one of three values: a positive
number that represents the difference between the best path
and second-best path, O if there were no paths in the lattice,
or oo (infinity) if there was only one path in the lattice.

0.35

Hm whisper

B speechmatics
0.30 1 m telephony

N LLM choice (wh/sp/tel)
0.25 - mmm “best" choice

overall WER

1-5 6-10 11+
wordcount bin

Fig. 1. Dataset 2 Results. Shorter documents benefit most from the LLM
selection method.

The value returned from the function appears to represent
a difference — or a distance measure — between the best
and second-best path; thus lower values of the return value
would indicate shorter distances, i.e., the best and second-
best paths are approximately the same. Therefore, a reasonable
hypothesis would be that if the best and second-best paths
are approximately similar according to that distance measure,
the confidence that the sentence has been correctly decoded
should be high. The following analysis explores the validity of
this hypothesis using a dataset shown in Table V. The dataset
is also drawn from the telephony domain, and mean of the
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Fig. 2. SentenceLevelConfidence() distribution.

dataset is between the means of Dataset #1 and Dataset #2 as
shown in Table 1.

‘ Statistic
Observations | 3081
Total duration | 4 hours 47 mins
Range | 0.7-8.1 seconds
Mean | 5.6 seconds
TABLE V

DATASET FOR I-BEST HYPOTHESIS DETERMINATION.

Of the 3,081 observations in the test dataset, 792 obser-
vations resulted in the SentenceLevelConfidence() method re-
turning infinity. That is, there was only one path in the lattice,
meaning the likelihood that this is the best path (most correct
transcript) would be very high (occ).These 792 observations
cannot be improved upon so we exclude these observations
from our analysis. The remaining observations return values
ranging from 0 to 151.84 (the x-axis in Figure 2).

The mass of the histogram is between values of 0-40.
However, there is a long tail that is not readily visible in the
figure. Based on the right skewness of the histogram, a cut-off
point can be established on the x-axis that represents a high
confidence of the decoded sentence: any sentence that had a
return value less than this threshold would be considered to be
decoded with a high confidence. Further analysis is required
to evaluate the appropriateness of such a cut-off point, as
described next.

The evaluation of the goodness of a cutoff point involves
the interplay between two variables: the sentence-level WER
(«) of an observation, and its return value from SentenceLevel-
Confidence() API (3). There should be a positive correlation
between « and (3: when the WER («) of the sentence is
low, the confidence () — i.e., the value returned from the
SentenceLevelConfidence() API — should also be low. (Recall
that lower return values from the SentenceLevelConfidence()
API imply less disagreement between the first and second-best
sentences.)

We will allow « to be the independent variable and set it to
a value of 0.13, close to the 50% value of LLM selection in
Table IV. 1,514 observations have values of o < 0.13; their

distribution is shown in table below. Table VI demonstrates

Statistic
Observations | 1514
Mean | 19.85
Std. Dev. | 17.96
Median | 15.45
Minimum | 0
Maximum | 151.84
TABLE VI

DISTRIBUTION OF 8 FOR @ < 0.13.

that the range of [ includes both extremes: the minimum
value of 0 and the maximum value of 151.84. Effectively, this
implies « is not correlated with 3 (r = -0.07), and therefore the
SentenceLevelConfidence() return values should not be used as
a measure of sentence-level confidence. Based on this analysis,
we reach the conclusion that the return value from this function
is an unstable measure of sentence-level confidence.

While this analysis is Kaldi-specific, confidence metrics are
common return value in ASR systems. Such metrics should
be closely evaluated for accuracy and appropriateness prior to
use in such tools.

V. CONCLUSION

Taken together, these experiments suggest that ASR tran-
scriptions of telephony audio can be improved via the LLM
selection method described here. We presented two targeted
improvement strategies that were effective on our datasets.
This method can be implemented on additional datasets given
knowledge of their domain and distribution, as well as ground
truth labels for a small subset.

LIMITATIONS

This work provides a proof-of-concept for the LLM selec-
tion method we present, tested on two proprietary datasets.
Further testing on additional larger datasets (including open-
source datasets) is needed to understand the full utility of this
approach. Moreover, it would be useful for future work to
include further testing of possible LLM prompts, including an
ablation analysis.

The discussion presented in Section IV-C is conducted on
the best-of-breed open source Kaldi ASR engine [15]. Kaldi
uses time-delay neural networks, which are feed-forward ar-
chitectures that use acoustic features as input and learn from an
increasingly sparse context window at each layer. Whisper, by
contrast, is architected as an encoder-decoder Transformer net-
work [12], while Google telephony combines convolutions and
transformers for speech recognition [16]. Published literature
on Speechmatics’ architecture is not readily available; based
on derivative works that have used Speechmatics (Williams et
al. [17]), it appears that Speechmatics uses a recurrent neural
network language model.

Given the differences in architectures enumerated in the
above paragraph, it is fair to contemplate whether the em-
pirical results we observe with Kaldi in Section IV-C hold
across other ASR architectures? We believe that the answer



is yes, because Kaldi’s modular approach allows developers
to fine-tune each stage (feature extraction, acoustic modeling,
language modeling, and decoding); the result of this is an
optimized, single-purpose model. Whisper, by contrast, is a
multi-purpose model that uses a sequence-to-sequence ap-
proach where the decoder generates text tokens directly from
the encoder’s representations using a supervised and semi-
supervised learning approach. Under such architectures, there
is a tendency to hallucinate, defined as “undesirable generated
text “that is nonsensical, or unfaithful to the provided source
input” [18]. Koenecke et al. [19] report that up to 1% of
Whisper’s transcripts contained entire made-up sentences that
did not occur in the corresponding audio file. They further
quantify that nearly 40% of hallucinations are harmful (as
opposed to harmless and random). We plan to investigate dif-
ferent architectures in future work to authoritatively determine
whether the behaviour of a single purpose, optimized ASR
model like Kaldi can serve to inform the community about
the need to consult an n-best hypotheses set or use the /-best
hypothesis.

APPENDIX: WORD ERROR RATE

The WER [20] is a widely accepted standard measure of
ASR performance; it is expressed as a value between [0, 1.0]
or as a percentage. ASR systems seek to minimize the WER.
It is represented as the ratio of the number of edits required
to transform a hypothesis string into a reference string to the
total number of words in the reference string, or

I+D+S

N (D
where S = number of substitutions required to change the
hypothesis string to the reference string, D = number of
deletions required, I = number of insertions, and N = total
number of words in the reference string. Lower values of WER
are preferred since they indicate an ASR model that makes less
errors.

Before the WER is calculated, the reference and hypothesis
strings are aligned using alignment algorithms [21]. The
following example demonstrates the WER calculation after
alignment has taken place.

WER =

REF':
HYP:

I want to pay my card.
I xxxx to play my part.

Insertions: 0

Deletions: 1 (want)

Substitutions: 2 (play, part)

WER = (2 + 1 +0) / 6 = 0.50
REFERENCES

[1] J. Fiscus, “A post-processing system to yield reduced word error rates:
Recognizer output voting error reduction (rover),” in 1997 IEEE Work-
shop on Automatic Speech Recognition and Understanding Proceedings.
IEEE, 1997, pp. 347-354.

[2] R. Ma, M. Qian, P. Manakul, M. Gales, and K. Knill, “Can generative
large language models perform asr error correction?” arXiv preprint
arXiv:2307.04172, 2023.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

C-H. H. Yang, Y Gu e al, “Generative speech
recognition error correction  with large language models
and  task-activating  prompting,” in ASRU 2023, 2023.
[Online]. Available: https://www.amazon.science/publications/

generative-speech-recognition-error-correction- with-large-language\
-models-and-task-activating- prompting

C. Chen, Y. Hu et al., “Hyporadise: An open baseline for generative
speech recognition with large language models,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

S. Radhakrishnan, C.-H. Yang et al., “Whispering LLaMA: A cross-
modal generative error correction framework for speech recognition,” in
Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing.  Singapore: Association for Computational
Linguistics, Dec. 2023, pp. 10007-10016. [Online]. Available:
https://aclanthology.org/2023.emnlp-main.618

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824-24 837, 2022.

C. T. Hemphill, J. J. Godfrey, and G. R. Doddington, “The
ATIS spoken language systems pilot corpus,” in Speech and
Natural Language: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27,1990, 1990. [Online]. Available:
https://aclanthology.org/H90-1021

D. B. Paul and J. M. Baker, “The design for the Wall Street Journal-
based CSR corpus,” in Speech and Natural Language: Proceedings of
a Workshop Held at Harriman, New York, February 23-26, 1992, 1992.
[Online]. Available: https://aclanthology.org/H92-1073

G. Chen, S. Chai et al., “Gigaspeech: An evolving, multi-domain
asr corpus with 10,000 hours of transcribed audio,” arXiv preprint
arXiv:2106.06909, 2021.

J. Bochner, M. Indelicato, and P. Konnur, “Effects of sound quality
on the accuracy of telephone captions produced by automatic speech
recognition: A preliminary investigation,” American Journal of Audiol-
ogy, vol. 32, no. 1, pp. 243-250, 2023.

W. Xiong, J. Droppo et al., “Achieving human parity in conversational
speech recognition,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. PP, 10 2016.

A. Radford, J. W. Kim et al., “Robust speech recognition via large-scale
weak supervision,” in International conference on machine learning.
PMLR, 2023, pp. 28492-28 518.

P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to
Data Mining (2nd Edition), 2nd ed. Pearson, 2018.

A. Dubey, A. Jauhri et al., “The llama 3 herd of models,” arXiv preprint
arXiv:2407.21783, 2024.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. K.
Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky,
G. Stemmer, and K. Vesely, “The kaldi speech recognition toolkit,” in
IEEE Workshop on Automatic Speech Recognition and Understanding,
2011.

A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-
augmented transformer for speech recognition,” in Interspeech, 2020,
pp. 5036-5040.

W. Williams, N. Prasad, D. Mrva, T. Ash, and T. Robinson, “Scaling
recurrent neural network language models,” in 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015,
pp. 5391-5395.

Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Comput. Surv., vol. 55, no. 12, Mar. 2023. [Online].
Available: https://doi.org/10.1145/3571730

A. Koenecke, A. S. G. Choi, K. X. Mei, H. Schellmann, and
M. Sloane, “Careless whisper: Speech-to-text hallucination harms,” in
Proceedings of the 2024 ACM Conference on Fairness, Accountability,
and Transparency, ser. FAccT ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 1672-1681. [Online]. Available:
https://doi.org/10.1145/3630106.3658996

K. Zechner and A. Waibel, “Minimizing word error rate in textual
summaries of spoken language,” in /st Meeting of the North American
Chapter of the Association for Computational Linguistics, 2000.

A. C. Morris, V. Maier, and P. D. Green, “From WER and RIL to
MER and WIL: improved evaluation measures for connected speech
recognition.” in Interspeech, 2004, pp. 2765-2768.



