
Lightweight domain adaptation: A filtering pipeline to improve
accuracy of an Automatic Speech Recognition (ASR) engine

Jordan Hosier
Vail Systems, Inc.
Chicago, IL, USA

jhosier@vailsys.com

Yu Zhou
Vail Systems, Inc.
Chicago, IL, USA

yzhou@vailsys.com

Nikhita Sharma
nsharma@vailsys.com

Vail Systems, Inc.
Chicago, IL, USA

Vijay K. Gurbani
vgurbani@vailsys.com

Vail Systems, Inc.
Chicago, IL, USA

ABSTRACT
Transformer models have accelerated the field of speech recogni-
tion; deriving a low word error rate (WER) is demonstrably achiev-
able under varying conditions. However, most ASR engines are
trained on acoustic and language models constructed from corpora
that include news feeds, books, and blogs in order to demonstrate
generalization, leading to errors when the model is applied to a
specific domain. While the increase in WER is acute for very spe-
cific domains (health and medicine), our work shows that it is
sizable even when the domain is general (hospitality). For such
domains, a lightweight adaptation approach can help; lightweight
because the adaptation does not require extensive post-hoc training
of additional domain-specific acoustic- or language-models that
act as adjutants to the base ASR engine. We present our work on
such lightweight filtering pipeline that seamlessly integrates light-
weight models (n−gram, decision trees) with powerful, pre-trained,
bi-directional transformer models, all working in conjunction to
derive a 1-best hypothesis word selection algorithm. Our pipeline
reduces the WER between 1.6% to 2.5% absolute while treating
the ASR engine as a black box, and without requiring additional
complex discriminative training.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
Speech recognition.

KEYWORDS
ASR, domain adaptation, decision trees, BERT, filtering pipeline,
transformer architecture
ACM Reference Format:
Jordan Hosier, Yu Zhou, Nikhita Sharma, and Vijay K. Gurbani. 2021. Light-
weight domain adaptation: A filtering pipeline to improve accuracy of
an Automatic Speech Recognition (ASR) engine. In 2021 4th International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACAI’21, December 22–24, 2021, Sanya, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8505-3/21/12. . . $15.00
https://doi.org/10.1145/3508546.3508641

Conference on Algorithms, Computing and Artificial Intelligence (ACAI’21),
December 22–24, 2021, Sanya, China. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3508546.3508641

1 INTRODUCTION
Despite the widespread availability of Automatic Speech Recogni-
tion (ASR) systems in both open source and commercial applica-
tions, high error rates in some domains remain a lingering imped-
iment for effective speech recognition. The effect of these errors
on the overall performance of ASR systems highlights the need for
techniques to automatically detect and rectify such errors. This is
important not only for improving overall ASR performance, but also
to contain potential adverse effects of such errors on downstream
language modeling processes and post-hoc analyses. The standard
metric of ASR evaluation is WER (lower values preferred). Some
ASR systems have been found to be successful under well controlled,
ideal circumstances, with WER in the 5-10% range [29]. However,
WER can increase substantially in noisy, unfamiliar settings, partic-
ularly Large Vocabulary Continuous Speech Recognition (LVCSR)
applications [8]. The gap in WER between an ideal deployment
and LVCSR applications motivates alternative methods to indepen-
dently mitigate ASR transcription errors. Such a system should be
capable of, independent of the ASR system used, further minimizing
the overall WER.

Contribution
We seek to identify and resolve mis-transcriptions present in

ASR transcripts. These transcripts are comprised of brief customer
satisfaction surveys recorded by a customer at the end of a call
center interaction. The recorded surveys are presented to Kaldi
ASR, an open-source toolkit for speech recognition [19], which
produces corresponding text transcripts of the surveys. Our novel
error detection and correction filtering pipeline, which we present
next, has the following advantages:
1) Lightweight in its domain adaptation:

Domain adaptation is most effective when a general purpose
ASR engine is used in a niche domain, healthcare and medicine, for
instance. Because a general purpose ASR engine does not have a
language model tuned to recognize the words and utterances used
in that domain, it is not uncommon to see a WER decrease of of 5-
7% [13] when domain adaptation is used in highly domain-specific
settings. However, our interest is in lightweight domain adaptation;

-592-

ACAI’21, December 22–24, 2021, Sanya, China Hosier et al.

Figure 1: Lightweight filtering pipeline

We consider domain adaptation as lightweight when a general
purpose ASR engine, with its native acoustic and language model,
will suffice, but due to a lossy channel (mobile phone), or a noisy
channel (random background noise), the ASR system is not able
to perform optimally. As an example, consider the phrase “get
another car.” In banking survey transcripts, it is more likely that
the customer said, “get another card" instead, but due to a degraded
channel signal the ASR errs on the final phoneme, /d/, in the word
“card."
2) Lighweight in its approach: Existing literature (Section 2) indicates
that techniques to improve the ASR engine accuracy often entail
additional training of deep neural acoustic models and bespoke
language models.

These ancillary models encompass domain-specific artifacts, and
are used as adjutants to the baseline general purpose ASR model to
improve performance. Our approach does not require such adju-
tants, the generation of which is a time consuming process. Instead,
it uses a model which is built on simple n-grams and phonetic
encodings and seamlessly integrates a pre-trained unsupervised
universal natural language model, BERT (Bidirectional Encoder
Representations from Transformers [6]).
3) Automatic operations: Our approach does not require the user to
act as an arbiter to improve accuracy. Instead, the word selection al-
gorithm automatically performs operations to improve accuracy in
the best case, and in the worst case, does not decrease the accuracy
from its baseline.
4) Uses simpler ASR-decoder features: Our approach eschews more
complex discriminative training of acoustic and language models
in favor of simpler ASR-decoder features, i.e., features generated
as a by product of the ASR process, namely, a word confidence
score. We treat the ASR system as a black box and only require it
to produce word confidence scores as part of its decoding output.

Our novel filtering pipeline is shown in Figure 1. The first filter
in the pipeline receives the generated transcript from Kaldi, anno-
tated with word confidence. This filter is comprised of two models:
(1) RAILS model (named after our research group), a lightweight
domain-specific model constructed from a corpus using n-gram
probabilities, augmented with a phonetic distance calculation (cf.,
Section 3.5.1), and (2) BERT, a pre-trained bi-directional transformer-
based language representation model (cf., Section 3.5.2). Each model
sends its output to the second filter, which fits these to a trained
decision tree model. The second filter synthesizes the final output
automatically, i.e., without any human intervention (cf. Section
3.5.3).

The result of the filtering pipeline is more accurate transcripts via
the automatic detection and correction of ASR errors. An example
of such errors, and the pipeline’s ability to rectify them, is visualized
in Table 1.

We apply two filtering approaches on transcriptions generated
from three pre-trained Kaldi ASR models: Api.Ai, Librispeech, and
Zamia. The out-of-the-box Api.Ai model has an overall WER of
0.49 on our test dataset, consisting of call survey transcripts, while
Kaldi’s Librispeech model has a word error rate of 0.47. The Zamia
model transcripts saw the lowest WER of 0.317. Despite the drop
seen in the Zamia model, this WER is still far from the competitive
WER’s seen under ideal conditions and among commercial ASR
systems.

The remainder of the paper is organized as follows: Section 2
reviews lines of research related to this effort. Section 3 presents
the proposed filtering pipeline, followed by Section 4, where we
present our results and a discussion of our approach. Finally, in
Section 5, we provide concluding remarks and directions for future
work.

2 RELATEDWORK
Performance of ASR engines has improved tremendously with deep
learning, getting closer to human-like WERs. By some measures
[22, 29], the best human accuracies on well known datasets such
as the Switchboard (SWB) and CallHome (CH) are 5.1% and 6.8%,
respectively. Saon et al. [22] demonstrated a WER of 5.5% and 10.3%
on SWB and CH, respectively, while Xiong et al. [29] claim 5.8%
and 11.0%, respectively. While ASR systems continue to improve,
there is still a wide variance in the WER rates among ASR engines
and even within a single ASR engine depending on the particular
domain. Traditionally, accuracy improvements in ASR engines have
been driven by improvements in acoustic and language modeling,
the availability of a large amount of training data, and high compu-
tational resources [4, 12, 28]. Because of the large corpora required
in training ASR engines — thousands of hours to tens of thousands
of hours, and even more — techniques have been developed to in-
vestigate speeding up the training phase. These techniques range
from distributed training across high-performance computing in-
frastructure to bespoke hardware1.

Despite these impressive advances, ASR errors remain inevitable.
Some of the errors stem from the imperfection of today’s speech
recognition technology, while others are introduced due to inher-
ent and irreducible noise in the out-of-sample (test) audio samples.
Error detection can be done on decoder-based features, i.e., features
generated as a byproduct of the ASR process – word confidence
scores, language model, and similar artifacts – or be performed on
the combination of decoder features and exogenous, non-decoder
based features. Furthermore, before an error can be corrected, it
must be detected; thus error correction techniques subsume error
detection. Finally, once an error is detected, it can be corrected
automatically, or require manual intervention. Within this taxon-
omy, our work is placed in the decoder-based, automatic (i.e., non-
manual) error correction techniques. The majority of existing work
focuses on error detection and manual error correction [1, 8, 18, 26];
below we place our work in the context of existing literature in
decoder-based error correction techniques, specifically correction
techniques that do not require human intervention.

1Nvidia’s A100 Graphical Processing Unit (GPU) has more than 54 billion transistors, allowing a
20-fold increase in horsepower over the company’s previous V100 GPU.

-593-

Lightweight domain adaptation ACAI’21, December 22–24, 2021, Sanya, China

Table 1: Examples of corrected and nearly corrected samples, with the error in question in bold font.

Ground-Truth Sentence ASR Filtering Pipeline
Short sweet and to the point Short sweet into the point Short sweet and to the point

He was polite but that’s not my issue He was polite but that’s not my essay He was polite but that’s not my fault
Very friendly and helpful Very friendly and info Very friendly and helpful

Sarma et al. [23] are motivated by searching regions in a tran-
script given a query word. They perform a lexical co-occurrence
analysis using a large corpus to identify regions in the data that
may contain likely context for a query word. Setlur et al. [24] per-
form error correction by flipping the hypotheses produced by an
N-best recognizer in cases when the top candidate has a confidence
score that is lower than that of the next candidate. Using a hybrid
confidence measure, they reduced the WER by 0.13% on a restricted
digit recognition task. Similarly, Zhou et al. [31] decreased their
error rate by 0.8% by devising a linear scoring approach to score
N-best (N=20) words that could be substituted for an erroneous
word. Liu et al. [11] do not differentiate whether a certain word is
right or wrong, but propose a score to evaluate to what degree the
candidate word is appropriate in the hypothesis sentence based on
topic modeling and word embedding, two semantic features. They
reduce the WER between 0.29% to 0.51%.

More recent literature [7, 9, 13, 17, 25] suggests training out-
of-domain machine translation models to better the results of a
general ASR engine. The out-of-domain models are fairly complex,
composed of hierarchical bi-directional LSTM (BLSTM) encoder
and decoders that learn domain-specific utterances to improve on
the base WER. When such trained out-of-domain models are used
in niche applications (medical transcripts, where a general ASR
engine will exhibit high WER), they tend to produce 5-7% WER
improvements, while in other cases these complex models yield
3-4% WER improvements. Shivakumar et al. [25] present a Noisy-
Clean Phrase Context Model that uses additional trained neural
language models to reduceWER by 0.29% and 0.55% on two datasets.
Bassil et al. [2] propose post-hoc filtering of transcripts using only
an external n-gram dataset curated from Microsoft’s Bing search
engine.

By contrast, our filtering approach is a lightweight domain adap-
tation technique that only requires a simple domain-adaptedn-gram
model [15] and a pre-trained and untuned BERT model. We eschew
more complex discriminative training of LVCSR tasks [21, 27] in
favor of simple ASR-decoder features and lightweight learning
models (n-grams and decision trees). Our proposed technique does
not require additional training of neural network models, instead,
using a pipeline approach, filters the output of the general purpose
ASR engine through the pipeline to exhibit an average reduction
of between 1.6% to 2.5% absolute WER across different pre-trained
Kaldi models.

3 FILTERING PIPELINE
3.1 Background on ASR engines
The goal of an Automatic Speech Recognition system is to map
an audio signal to its corresponding text. ASR systems generally
consist of an acoustic model, a language model, and a decoder. ASR

Figure 2: General framework of ASR systems

systems decode speech input to generate the best guess transcrip-
tion of the words that were spoken, as text output. Briefly, the
feature extraction module extracts representative features from the
speech signal while suppressing unnecessary noise. The acoustic
model is responsible for modelling the speech acoustics, and tran-
scribing the extracted audio features into a sequence of context
dependent phonemes. (Most acoustic models today are trained us-
ing deep neural networks.) The language model determines which
words or sequence of words are more likely, given the surrounding
words as context, and finally, the decoder uses the acoustic model,
the grammar, and the language model collectively to generate word
sequences that are likely for a particular audio frame. The word
sequence with the highest probability is the final text output. The
interested reader is directed to [30] for a detailed treatment of ASR
systems.

First, the input waveform is split into small parts or frames, usu-
ally 25ms in length and some features are extracted from it. It is
standard practice to extract MFCCs (Mel-Frequency Cepstral Co-
efficients), CMVNs (Cepstral Mean and Variance Normalization)
that represent the content of the audio, or i-Vectors that capture
the style of the speaker or utterance. It is essential that the features
chosen suffice to identify the features of human speech while sup-
pressing unnecessary noise. Thus, the audio signal is compressed
into a sequence of fixed length vectors via feature extraction. Next,
the acoustic model predicts which phoneme is being spoken in each
frame of audio. The acoustic model is responsible for modelling
the speech acoustics, transcribing the extracted audio features into
some sequence of context dependent phonemes. Acoustic models
are trained using Deep Neural Networks (DNNs) on large datasets,
typically thousands of hours of human transcribed audio data.

A lexicon or dictionary maps each word to its phonetic repre-
sentation, and is used in an ASR system to convert the predicted
phonemes into words and eventually complete sentences. The lan-
guage model determines which words or sequence of words are
more likely, given the surrounding words as context. This context
is typically derived from neural networks or n-gram models trained
on a very large textual dataset. Finally, the decoder uses the acoustic
model, the grammar, and the language model collectively to gener-
ate word sequences that are likely for a particular audio frame. The
word sequence with the highest probability is the final text output.

-594-

ACAI’21, December 22–24, 2021, Sanya, China Hosier et al.

Table 2: Comparison of pre-trained models

Api.Ai LibriSpeech Zamia
Training data Api.Ai logs, Audio books Various
(hrs) LibriSpeech corpus (960 hours) (1,200 hours)

(unknown hours)
Type of model nnet3 chain TDNN chain TDNN chain
Size 177 MB 2 GB 609 MB
Words in 128K 200K 169K
vocabulary

Table 3: Dev/test split.

Dev Test
Model Data Audio files Words Audio files Words
Api.Ai 887 279,156 813 256,036

LibriSpeech 888 281,214 812 257,374
Zamia 888 278,553 812 274,938

3.2 Acoustic and language models used
To evaluate our novel filtering pipeline, we use three pre-trained
Kaldi models: an Api.Ai model2, a LibriSpeech model3, both pro-
vided as models in the Kaldi distribution. The third model is pro-
vided by Zamia4, a third party under an open source license. The
Api.Ai model is the simplest of the models, trained on a mix consist-
ing of English audiobooks and short commands (“Wake me up at
7am."). The LibriSpeech model, consisting of a chain system based
on Time Delay Neural Net (TDNN), consists of approximately 1,000
hours of audiobook content, carefully segmented and aligned. The
third model from Zamia is the most resource intensive of the mod-
els, providing the best accuracy by being trained on about 1,200
hours of high quality, noise resistant audio. Like LibriSpeech, the
Zamia model is also a large nnet3-chain factorized TDNN model.
(See Table 2 for a comparison.)

3.3 The Data
Subsequent analyses are derived from customer call surveys; the
original audio files consisted of customers leaving voice survey
responses about their experience with the call center agent. The
surveys varied in length from one word to approximately 300 words.
The data was given as input to each of the three Kaldi models in the
form of 1,700 audio files transcribed by human transcribers. These
transcriptions serve as the ground truth, a benchmark to evaluate
the word error rate (WER) of both the raw Kaldi output and the
adjusted output after applying our filtering pipeline.

The WER measures the percentage of incorrect words by adding
up the total number of Substitutions (S), Insertions (I), and Deletions
(D) that occur in a sequence of recognized words, which is deter-
mined by aligning any automatically generated transcriptions with
the ground-truth, human transcriptions. The sum is subsequently
divided by the total number of words (N), resulting in the WER as

2https://github.com/dialogflow/api-ai-english- asr-model, last visited Apr 16, 2021.
3https://kaldi-asr.org/models/m13, last visited Apr 16, 2021.
4https://goofy.zamia.org/zamia-speech/asr-models/kaldi-generic-en-tdnn_fl-r20190609.tar.xz, last
visited Apr 16, 2021.

shown in Equation 1.

WER =
S + D + I

N
(1)

The filtering pipeline is developed and tested on a develop-
ment/test split of Kaldi generated transcript datasets derived from
the three pre-trained Kaldi models: Api.Ai, LibriSpeech, and Zamia
(Table 3). Since each model makes different deletion and insertion
errors, the number of words in the development and test sets are
slightly different across the Kaldi models. The development sets
are used to tune the parameters of the RAILS model and the word
selection algorithm.

3.4 Preliminaries
As Figure 1 demonstrated, our lightweight filtering pipeline works
by examining the output of Kaldi, finding regions of low confi-
dence (i.e. words). These regions are subsequently presented to
the first filter, which suggests improvements on low confidence
words. These improvements are sent to the second filter, which in
turn uses a word selection algorithm to synthesize the suggestions
and produces a 1-best replacement hypothesis for the Kaldi low
confidence word.

To aid in subsequent discussion, we formalize the definitions
that appear in the rest of the paper. Let K be the Kaldi region that
exhibits low confidence, and let C(K) be a function that computes
the confidence of K :

C(K) ∈ {x ,−1},x ∈ R : 0.0 ≤ x ≤ 1.0 (2)

i.e., C(K) is either x or −1, where x represents the confidence of
Kaldi in the rendering region K . This confidence is calculated based
on posterior probabilities in the decoding lattice. One exception
to this is in the case of deleted regions that we represent as -1.
During training, deleted words can be identified after aligning the
ASR generated transcripts with ground-truth human transcripts.
After alignment leads to the identification of deleted words, we
automatically mark them with -1.

In order to improveK , the RAILS model creates R = {R1, ...,RN },
an ordered N-best hypotheses set, where N <= 10. The algorithmic
filter is provided R and using BERT, it produces B = {B1, ...,BN },
an ordered N-best hypotheses set (N = 10). For both R and B, the
first element in the set, R1 and B1, respectively, is of interest as
this element is the hypothesis that represents the replacement re-
gion. Additionally, the original region, K , also remains a candidate
hypothesis. Therefore, let F ∈ {R1,B1,K} refer to this final hy-
pothesis that serves as a replacement region. (Note that {R1,B1,K}
is a multiset since it may contain multiple instances of the same
element.)

To evaluate the goodness of hypothesis F , an updated confidence
function C ′(F) is defined:

C ′(F) =
(
−1 : C(F) = {−1}
C(F) \ {−1} : otherwise

(3)

where C(F) is defined in Equation 2. Equation 3 enumerates three
potential outcomes of the pipeline applied to K , the region with
low confidence:

-595-

Lightweight domain adaptation ACAI’21, December 22–24, 2021, Sanya, China

Table 4: Training specifications.

Audio files Words
86,924 1,816,970

1. C ′(F) = C ′(K): Algorithm chooses F = K as the final hypoth-
esis for the replacement region. In such an event, WER remains
unchanged.
2. C ′(F) > C ′(K): Algorithm chooses F ∈ {R1,B1,K} \ {K}, i.e., it
chooses either R1 or B1 as the final hypothesis for the replacement
region. This choice is correct, thus decreasing the WER.
3. C ′(F) < C ′(K): Algorithm chooses F ∈ {R1,B1,K} \ {K}, i.e., it
chooses either R1 or B1 as the final hypothesis for the replacement
region. This choice is incorrect because K was actually rendered
correctly and the final replacement word suggested by the pipeline
is erroneously applied, increasing WER.

3.5 The Filters
3.5.1 Filter 1: RAILS Model. The RAILS model is a real-time,
automatic instantiation of the approach presented in [10]. Given
low-confidenceword, themodel suggests higher probability replace-
ments. These probabilities are generated from n-grams trained on
a corpus of approximately 87,000 customer survey transcripts con-
sisting of 1.8 million words (See Table 4). The model is constructed
from the following building blocks: (1) a dataset containing all uni-,
bi- and tri- and four-grams from the corpus and their respective
probabilities, and (2) a phonetic encoding component, known as the
match rating approach (MRA), which is used to determine phonetic
similarity between lexical items [16].

The RAILS model is applied to words with low confidence and if
the context is sufficient to make an alternate prediction, the model
uses n-grams and phonetic distance measures to suggests an N-best
list, R = {R1, ...,RN }, (N ≤ 10). R may be null in the absence of
context among the trained n-grams. When R is not null, elements
in the list are sorted by their probability, i.e., the most preferred
element is in R1.
3.5.2 Filter 1: BERT. BERT (Bidirectional Encoder Representations
from Transformers) [6] is a language representation model using a
Transformer network trained on large text corpora. It has achieved
state-of-the-art performance on various NLP tasks. Processing an
input text with certain words masked out, it can make predictions
on the masked words by extracting contextual information from
all surrounding text. In this work we use BERT to complement
the RAILS model result. Using the pre-trained BERT Large Masked
Language Model (MLM) without fine-tuning, for each low confi-
dence word K in Kaldi transcript, an ordered N-best hypothesis
set B = {B1, ...,BN }, (N = 10) is generated as potential replace-
ment candidate. Like the RAILS model, elements in B are sorted by
probability in context, i.e., the highest probability element is in B1.
3.5.3 Filter 2: A word selection algorithm. For a given low con-
fidence word K in a Kaldi transcript, if both ordered hypothesis
sets from the RAILS model, R, and BERT, B, are available, then it
is possible to select a final hypothesis (word) F in place of K that
results in a higher probability of matching the ground truth (hu-
man transcription) than always using R1 or B1 alone. Therefore

the problem is reduced to specifying a word selection algorithm to
choose F ∈ {R1,B1,K} in place of K to minimize WER.

This word selection algorithm is developed with the assistance
of R and B, and their intersection T = R ∩ B = {T1, ...,Tn }, (n ≤
N), with the same element ordering as R. We chose the set T to
add more variance and to better generalize the decision trees. To
motivate the intuition behind this, consider R = {a,b, c, f }, and
B = {x ,b,y, f }; then, T = {b, f }. Clearly, T1 = b is considered
as a high probability candidate by both RAILS and BERT models,
thus allowing it as a possible response seems appropriate. In a
sense, T1 acts as an arbiter to further increase the confidence that
F has a high probability of being correct. To observe this, note that
F ∈ {R1,B1,K} implies that if K is not chosen as the final response,
then there is no reliable arbiter to determine which of R1 or B1
should be chosen (c.f. outcomes 2 and 3 of Eq. 3). Elements in T
have a high probability of being correct since they appear in both
lists, R and B. Thus, T1 can be considered an arbiter by observing
which of B1 or R1 matches it, and then considering the matched
element to be the final response.

Algorithm 1:Word selection algorithm
for all utterances do

while low confidence regions in utterance do
K← region of low confidence
R← RAILS(K) // RAILS suggestion
B← BERT(K) // BERT suggestion
T← R ∩ B
F← Predict_Response(R,B,K,T)

end
end
Function Predict_Response(R,B,K ,T):

if K = � then
/* Deletion */

if (R1 = �) or (B1 ∈ R and B1 , T1) then
F← B1

else
F← R1

end
else

/* Substitution */

if (R1 ∈ T) and (K , B1) then
F← R1

else
F← K

end
end
return F

The word selection algorithm is extracted from a decision tree
model [20] and shown in Algorithm 1. We prefer decision trees
to other hypothesis sets for their interpretability and intuition in
understanding how a particular decision was made. We created a
multi-class decision tree that predicts the class of F ∈ {R1,B1,K}.
To train the decision tree model, all possible Boolean features be-
longing to the categories of word validation, word comparison, and
word membership are utilized. There are 15 features total, they are
shown in Table 5.

-596-

ACAI’21, December 22–24, 2021, Sanya, China Hosier et al.

Table 5: Boolean features for Decision Tree

Word Word Word
Validation Comparison Membership
K = � K = R1 K ∈ R

R1 = � K = B1 K ∈ B

R1 = B1 R1 ∈ B

K = T1 B1 ∈ R

R1 = T1 K ∈ T

B1 = T1 R1 ∈ T

B1 ∈ T

Table 6: Performance of the RAILS model in Filter 1.

ASR Model Filter WER Corr- Mis- Net
Model ected corrected Corrected

Api.Ai (Base RAILS 0.481 539 411 128
WER:0.492)
Librispeech (Base RAILS 0.436 380 301 79
WER: 0.443)
Zamia (Base RAILS 0.303 307 69 238
WER: 0.317)

Word validation determines if K and R1 are null. (Note that there
is no check for B1 = � because unlike the RAILS model that can
return R = {�} if it does not find the appropriate context in the
n-grams, BERT always returns a non-null N-best list, B.) Word com-
parison creates features by exhaustively exploring the symmetric
pairings of each element in {R1,B1,K}, with an additional three
features that capture the pairing of {R1,B1,K} with T1. Word mem-
bership creates binary features by examining the membership of
the response variables {R1,B1,K} in the sets R,B, and T . Human
transcription is used as the ground truth for training the decision
tree, and a missing word in Kaldi transcription is represented as
NULL (�).

To train the decision tree, first the dataset is partitioned into dev
and test (Table 3). Each audio file in the dev partition is considered
an utterance and is examined for low confidence words. Each low
confidence word becomes a new training (and test) vector that
contains the 15 attributes in Table 5 and the response variable. Thus,
one utterance may generate multiple training (and test) vectors. The
trained tree is then examined, the algorithm shown in Algorithm
1 extracted, subsequently used in Filter 2 (cf. Section 3.5.3). The
results from the algorithm fitted on the test set are discussed in
Section 4.1.3.

4 EVALUATION RESULTS AND DISCUSSION
We now present the results and subsequent discussion on applying
our pipeline. We first present the results of the RAILS model and
the BERT model on the datasets to observe their effects when used
in isolation before introducing a decision-tree based word selection
algorithm.

4.1 Performance
4.1.1 Filter 1: RAILS model performance. The Kaldi Api.Ai model
saw a 1.1% improvement in overall WER when only the RAILS

Table 7: Results appended with BERT.

ASR Model Filter WER Corr- Mis- Net
Model ected corrected Corrected

Api.Ai (Base RAILS 0.481 539 411 128
WER: 0.492) BERT 0.494 397 526 -129
Librispeech (Base RAILS 0.436 380 301 79
WER: 0.443) BERT 0.450 255 381 -126
Zamia (Base RAILS 0.303 307 69 238
WER: 0.317) BERT 0.311 197 99 98

model was applied (Table 6). This improvement was largely a result
of bringing the deletion rate down by 8%. The substitution rate,
however, went up. There were instances where the RAILS model
was applied on correct Kaldi transcriptions with low word confi-
dence, which resulted in a higher substitution WER. The RAILS
model is applied to all words with a confidence of 0.60 or less, the
optimal threshold found for this model data. This threshold was
optimized to maximize the number of correct replacements and
minimize the number of incorrect replacements of words with low
word confidence.

Of all words below this threshold on which the RAILS model is
applied, some are correctly changed, some are incorrectly changed,
and some remain unchanged if the context is not sufficient to sug-
gest an alternative. Thus, while we see 8% gains in the deletion rate,
this is partially negated by the increase in substitution error rates,
or mis-corrections. Further, some increases in the substitution rate
can be attributed to deletion errors being moved to substitution
errors in cases where the RAILS model hypothesis for the deleted
word in the Kaldi transcript does not match the ground truth.

The LibriSpeech model saw a .07% improvement in overall WER
after application of the RAILS model (Table 6). As was the case
in the Api.Ai model, the substitution rate increased. In this model
data, the RAILS model is applied to all words with a confidence of
0.50 or less, the threshold found to be optimal for this model data.

The Zamia model saw a 1.4% absolute improvement in overall
WER after application of the RAILS model (See Table 6). Under this
regime, the RAILS model is applied to all words with a confidence
of 0.40 or less, the optimal threshold for this data. Once again, we
see that gains in WER are limited by the rate of mis-substitutions.
For this reason, we use BERT as an additional model in an effort to
decrease the rate of mis-corrections.

4.1.2 Filter 1: BERT performance. The pre-trained BERT model
is used without fine-tuning on our dataset, therefore it is not as
accurate as the RAILS model. The results of using BERT as the only
model in filter 1 are shown in Figure 7. Compared to using the
RAILS model, BERT demonstrates a consistent increase in WER
when we fit our data with BERT. To this end, BERT in a stand alone
fashion can serve as a benchmark for the RAILS filter. The more
interesting aspect of BERT’s performance — and an explanation
of the increase in WER — is shown in the last column of Table 7.
For the less complex ASR models (Api.Ai and LibriSpeech), BERT’s
net corrected is negative, while for the complex Zamia ASR model
it is positive. This would appear to imply that BERT works best
when the neighboring words are contextually accurate. Because

-597-

Lightweight domain adaptation ACAI’21, December 22–24, 2021, Sanya, China

Table 8: Results appended with decision tree models.

ASR Model Filter WER Corr- Mis- Net
Model ected corrected Corrected

Api.Ai (Base RAILS 0.481 539 411 128
WER:0.492) BERT 0.494 397 526 -129

DT-A 0.467 503 52 451
Librispeech (Base RAILS 0.436 380 301 79
WER: 0.443) BERT 0.450 255 381 -126

DT-L 0.427 309 25 284
Zamia (Base RAILS 0.303 307 69 238
WER: 0.317) BERT 0.311 197 99 98

DT-Z 0.300 325 9 316

the less complex ASR models make more mistakes on the average,
they deprive BERT from the context needed to correct errors.

Finally, for the sake of completeness we note that the results in
Table 7 are obtained using the same word confidence thresholds
that have been optimized for achieving the best RAILSmodel results
(c.f., Section 4.1). However, we note that these thresholds do not
affect the results from BERT in any quantitative manner since
the purpose-trained RAILS model will be more effective for this
application than the pre-trained BERT model. The contribution of
BERT becomes apparent as we move to filter 2, and this is discussed
next.

4.1.3 Filter 2: Word selection algorithm performance. The benefit of
the pipeline lies in the processing of Filter 2. In this filter, the N-best
list from BERT is used in combination with the N-best list from the
RAILS model. The algorithms that perform these combinations and
select a word are derived from training a decision tree model as
discussed in Section 3.5. Three decision tree models are induced
— one for each ASR model — on the dev set and evaluated on the
test set (Table 3). The results from evaluating the decision trees
on the test set in terms of WER and associated information are
summarized in Table 8. (In the table, DT-A, DT-L and DT-Z refer
to the learned decision trees for Api.Ai, LibriSpeech and Zamia
models, respectively.) Next, we analyze the results for the Api.Ai
model, analysis of the other two ASR models will follow similar
reasoning.

Table 8 shows that while the RAILS model is able to correct
539 low-confidence regions in the Api.Ai model, it also made 411
errors. These errors are a result of the originally correct transcrip-
tion word (K) being replaced by incorrect RAILS model 1-best
hypothesis (R1) in regions of low confidence. The selection func-
tion induced by training a decision tree (indicated by the row DT-A),
demonstrates that the mis-corrections were reduced by a factor of
8 (or 800%) when compared to the mis-corrections made by the
purpose-trained RAILS model. Using a decision tree word selection
algorithm brings the mis-corrections down to 52 (from 411). This
also has the serendipitous side effect of increasing the net corrected
by approximately 350% (or a factor of 3.5) compared to the bespoke
RAILS model. The net result of the application of filter 2 is that
the pipeline has decreased the WER from the Api.Ai model base
WER of 0.492 to 0.467 when using the decision tree word selection
algorithm, a decrease of 0.025 (or 2.5%) in absolute terms.

Table 9: Decision tree accuracy for ASR Models.

Low Decision Decision
confidence tree matches tree
regions ground truth accuracy (%)

Api.Ai 7,888 1,677 21.3
LibriSpeech 5,540 1,296 23.4
Zamia 3,375 563 16.7

Using similar reasoning, the decision tree word selection algo-
rithm for the LibriSpeech ASR model reduced the mis-corrections
by a factor of 12 (or 1200%, from 301 mis-corrected when using
RAILS model to only 25 mis-corrected when using DT-L), and the
WER decreased by 0.016 (or 1.6% absolute, from a base of 0.443
to 0.427). The decision tree word selection algorithm for the Za-
mia ASR model reduced the mis-corrections by a factor of 7 (or
700%, from 69 mis-corrected when using RAILS model to only 9
mis-corrected when using DT-Z), and the WER decreased by 0.017
(or 1.7% absolute, from a base of 0.317 to 0.300) when using DT-Z.

A second observation is apparent in the WER decrease as the
ASR models become more complex. The Zamia ASR model, the
most complex of the three, has a WER of 0.317. However, even at
this WER, our filtering pipeline was able to further decrease the
WER to 0.300 when using the decision tree selection function, a
decrease of 0.017 (or 1.7%) absolute.

4.2 Discussion: Using a decision tree as a word
selection function

The WER for each ASR model is a function of the complexity and
size of the model’s training. The more complex the model, the
less error it makes leading to a smaller WER as shown in Table 8.
Consequently, for each of the three ASR models, the distribution
represented by the regions of low confidence are different, and we
treat each such distribution as an independent dataset on which to
train a decision tree.

As discussed in Section 4.1.3, the decision trees are able to reduce
the WER between 1.6% to 2.5% absolute, depending on the ASR
model. For the Api.Ai model, the decision tree is able to reduce the
mis-corrections by 800%. Thus, clearly, the decision trees contribute
to the reduction of the WER and to the associated increase in the
accuracy of the generated transcript. However, if we were to exam-
ine the traditional performance measures associated with decision
trees (accuracy, precision, and recall), we discover that they do not
quite reflect the gains in performance shown in Section 4.1.3. Table
9 demonstrates an accuracy of only 21.3% for the Api.Ai model for
decision tree model induced on the dev partition and fit to the test
partition.

Clearly, the table shows that traditional performance measures
alone are not very high. However, just as clearly, the discussion
in Section 4.1.3 demonstrates that the decision trees have a large
impact on reducing the mis-corrections, as well as the overall re-
duction in the WER in our pipeline. Next, we discuss the reasons
why the traditional performance of decision trees as measured in
Table 9 is low; this discussion will motivate the need for proposing
a new performance measure we call predictive utility to evaluate

-598-

ACAI’21, December 22–24, 2021, Sanya, China Hosier et al.

Table 10: Measuring the impact of decision trees.

RAILS or BERT or Decision Tree Predictive
KALDI matches matches ground utility (P)
ground truth truth

Api.Ai 2,048 1,677 81.9%
LibriSpeech 1,556 1,296 83.3%
Zamia 687 563 82.0%

the contribution of decision tree as a word selection algorithm in
our work.

Recall from the discussion in Section 3.5.3 that 15 binary fea-
tures were extracted from the training dataset, and decision trees
are learned. The shape of the training data is Mx15, where M is
2067, 1585, and 734 for the Api.Ai, LibriSpeech, and Zamia models,
respectively. Theoretically, for 15 binary features, a decision tree
would need to be trained on 215 = 32, 768 observations to learn
all patterns. (However, note that even if we had access to such a
training corpus, accuracy will be < 100% because for many obser-
vations, the response variable F ∈ {R1,B1,K} will not match the
human transcribed ground truth, i.e., neither R1,B1, or K matches
the ground truth.) In our case, the training datasets contains only
between 2% to 6% of the theoretical number of observations from
which to find patterns and generalize. The low number of training
observations occur primarily because we can only use samples for
training where one of {R1,B1,K} matches the human transcribed
ground truth. For most of the low confidence regions in the dev
partion on which the trees are trained, none of {R1,B1,K} matches
the ground truth. Thus, with training occurring on an extremely
small subset of observations, traditional decision tree performance
measures (precision, recall, accuracy) do not suffice. Our aim is to
extract enough residual information from predictions of the deci-
sion tree to aid in lowering the overall WER, for this, we formulate
a measure called predictive utility. Eq. 4 quantifies the predictive
utility (P , in percentage) of the decision trees:

P =
|D |
|A| ∗ 100. (4)

Here, D is a multiset defined as follows: D = ∀w ∈ {L} : {dw |dw =
Truth}, where L is a set of all low confidence regions (column 1 of
Table 9), dw is the predicted output of the decision tree on a low
confidence regionw , and dw matches the ground truth (Truth).

In Eq. 4, A is a multiset defined as follows: A = ∀w ∈ {L} :
{aw |aw = Truth}. In order for aw to be included in A, one of the
following conditions must hold:
1. aw = R1 = Truth: aw must be equal to the RAILS 1-best hypoth-
esis forw , which must be equal to the ground truth; or
2. aw = B1 = Truth: aw must be equal to the BERT 1-best hypothe-
sis forw , which must be equal to the ground truth; or
3. aw = K = Truth: aw must be equal to K , the word chosen by
Kaldi, and K must be equal to the ground truth.

Table 10 shows the predictive utility, P , for every ASR model.
Without a decision tree selection algorithm to guide the choice of a
specific element to choose from {R1,B1,K}, any one of these has an
equal probability of being chosen. For the Api.Ai ASR model, there
are 2,048 observations where one of these elements matches the
ground truth, but it is not clear which one to choose. The decision

tree is able to correctly predict 1,677 of these observations, leading
to a predictive utility of 81.9%. Similar analysis applies for the
remaining two ASR models. It is important to note that despite the
complexity of the ASR model being used, the decision tree word
selection algorithm improves the predictive utility by an average
of 82.4%.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a lightweight filtering pipeline consisting
of two filters: the first filter fits lightweight trained model (n-grams),
and pre-trained, out-of-the-box language model (BERT) to the tran-
scripts generated by a general purpose ASR engine. Filter 2 uses a
trained decision tree to derive a word selection algorithm to mini-
mizes both the mis-corrections, and the WER. Our algorithm makes
the correct selection on up to 83.3% of the low-confidence words,
resulting in a WER reduction of 1.6% to 2.5% absolute. Our pipeline
does not require training deep learning models or human interven-
tion. It takes advantage of advances in attention based transformer
models by seamlessly integrating powerful, pre-trained models.

The benefits of our particular approach are as follows. First,
our filtering pipeline does not require training any deep learning
models nor does it require any human intervention. To the extent
that additional training is required in our pipeline, that training
is lightweight, namely, an n-gram model and decision trees. Sec-
ond, our pipeline takes advantage of advances in attention based
transformer models by seamlessly integrating powerful, pre-trained
models like BERT. Third, our approach also treats the ASR engine
as a black box, and only requires that it output a word confidence
score as a part of the decoding to detect potential word errors. Thus,
the filtering pipeline can be applied in an independent, post-hoc
fashion. This approach is unique in the realm of domain-adaptation
in that the ASR errors arise largely from a lossy or noisy channel,
rather than errors resulting from deploying the ASR system on an
out-of-domain vocabulary.

There are a number of areas of further exploration. First, as
attention-based transformer models benefit from continued re-
search, our pipeline can seamlessly integrate other pre-trained
deep bi-direct-ional language models like Elmo [14] and GPT-3
[3]. We would like to characterize the efficacy of such integration.
Next, the models in Filter 1 can be easily parallelized; each model
independently creates an N-best hypotheses set from the transcript
and sends its output to Filter 2, an architecture highly amenable
to a map-reduce computing paradigm [5] where all maps are par-
allelized. A third area of exploration is investigating the optimal
word confidence threshold for BERT and optimizing this hyper-
parameter for further contribute in Filter 2. In our current work,
we learn the word threshold through a grid search while training
the RAILS model, and reuse it for BERT. Finally, we treat the ASR
engine as a black box, and only requires that it outputs a word con-
fidence score while decoding. The filtering pipeline can be applied
in an independent, post-hoc fashion to mitigate errors arising from
lossy or noisy channels, a reality in any deployment.

REFERENCES
[1] W. A. Ainsworth and S. R. Pratt. 1992. Feedback Strategies for Error Correction in

Speech Recognition Systems. Int. J. Man-Mach. Stud. 36, 6 (June 1992), 833–842.

-599-

Lightweight domain adaptation ACAI’21, December 22–24, 2021, Sanya, China

[2] Youssef Bassil and Paul Semaan. 2012. ASR Context-Sensitive Error Correction
Based on Microsoft N-Gram Dataset. ArXiv abs/1203.5262 (2012).

[3] Tom B. Brown et al. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[4] Xiaodong Cui, Wei Zhang, Ulrich Finkler, George Saon, Michael Picheny, and
David S. Kung. 2020. Distributed Training of Deep Neural Network Acoustic
Models for Automatic Speech Recognition: A comparison of current training
strategies. IEEE Signal Process. Mag. 37, 3 (2020), 39–49. https://doi.org/10.1109/
MSP.2020.2969859

[5] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/10.
1145/1327452.1327492

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv e-prints, Article arXiv:1810.04805 (Oct. 2018), arXiv:1810.04805 pages.
arXiv:1810.04805 [cs.CL]

[7] Luis D’Haro and Rafael Banchs. 2016. Automatic Correction of ASR Outputs by
Using Machine Translation. In Interspeech. 3469–3473.

[8] Rahhal Errattahi, Asmaa El Hannani, and Hassan Ouahmane. 2018. Automatic
speech recognition errors detection and correction: A review. Procedia Computer
Science 128 (2018), 32–37.

[9] Yohei Fusayasu, Katsuyuki Tanaka, Tetsuya Takiguchi, and Yasuo Ariki. 2015.
Word-Error Correction of Continuous Speech Recognition Based on Normalized
Relevance Distance. In IJCAI.

[10] Jordan Hosier, Vijay K Gurbani, and Neil Milstead. 2019. Disambiguation and
Error Resolution in Call Transcripts. In 2019 IEEE International Conference on Big
Data (Big Data). IEEE, 4602–4607.

[11] Chang Liu, Pengyuan Zhang, Ta Li, and Yonghong Yan. 2019. Semantic Features
Based N-Best Rescoring Methods for Automatic Speech Recognition. Applies
Sciences 9(23):5053 (2019).

[12] Yanhua Long, Yijie Li, Shuang Wei, Qiaozheng Zhang, and Chunxia Yang. 2019.
Large-Scale Semi-Supervised Training in Deep Learning Acoustic Model for ASR.
IEEE Access 7 (2019), 133615–133627.

[13] A. Mani et al. 2020. ASR Error Correction and Domain Adaptation Using Machine
Translation. In IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP).

[14] Peters Matthew et al. 2018. Deep Contextualized Word Representations. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). Association for Computational Linguistics, New Orleans, Louisiana,
2227–2237. https://doi.org/10.18653/v1/N18-1202

[15] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).

[16] Gwendolyn B Moore et al. 1977. Accessing Individual Records from Personal
Data Files Using Non-Unique Identifiers. Final Report. Computer Science &
Technology Series. (1977).

[17] Ryohei Nakatani, Tetsuya Takiguchi, and Yasuo Ariki. 2013. Two-step correction
of speech recognition errors based on n-gram and long contextual information.
In INTERSPEECH.

[18] J. M. Noyes and C. R. Frankish. 1994. Errors and error correction in automatic
speech recognition systems. Ergonomics 37, 11 (1994), 1943–1957.

[19] Daniel Povey et al. 2011. The Kaldi speech recognition toolkit. In IEEE 2011 work-
shop on automatic speech recognition and understanding. IEEE Signal Processing
Society.

[20] J. R. Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (March 1986),
81–106.

[21] Brian Roark, Murat Saraclar, and Michael Collins. 2007. Discriminative n-gram
language modeling. Computer Speech & Language 21, 2 (2007), 373 – 392. https:
//doi.org/10.1016/j.csl.2006.06.006

[22] George Saon et al. 2017. English Conversational Telephone Speech Recognition
by Humans and Machines. In Proc. Interspeech 2017. 132–136.

[23] Arup Sarma et al. 2004. Context-Based Speech Recognition Error Detection and
Correction. In Proc. of HLT-NAACL 2004: Short Papers (Boston, Massachusetts).
Assn. for Computational Linguistics, 85–88.

[24] A. R. Setlur et al. 1996. Correcting recognition errors via discriminative utterance
verification. In Proc. of 4th Intl. Conf. on Spoken Language Processing., Vol. 2.
602–605.

[25] Prashanth Gurunath Shivakumar et al. 2019. Learning from past mistakes: im-
proving automatic speech recognition output via noisy-clean phrase context
modeling. APSIPA Trans. on Signal and Information Processing 8 (2019).

[26] Y. Tam et al. 2014. ASR error detection using recurrent neural network language
model and complementary ASR. In IEEE Intl. Conf. on Acoustics, Speech and Signal
Processing.

[27] P.C. Woodland and D. Povey. 2002. Large scale discriminative training of hidden
Markov models for speech recognition. Computer Speech & Language 16, 1 (2002),
25 – 47. https://doi.org/10.1006/csla.2001.0182

[28] Xiaodong Cui, Liang Gu, Bing Xiang, Wei Zhang, and Yuqing Gao. 2008. Develop-
ing high performance ASR in the IBM multilingual speech-to-speech translation

system. In 2008 IEEE International Conference on Acoustics, Speech and Signal
Processing. 5121–5124.

[29] Wayne Xiong et al. 2017. Toward Human Parity in Conversational Speech
Recognition. IEEE/ACM Trans. Audio, Speech and Lang. Proc. 25, 12 (Dec. 2017),
2410–2423.

[30] Dong Yu and Li Deng. 2015. Automatic Speech Recognition. Springer-Verlag,
London.

[31] Zhengyu Zhou et al. 2006. A multi-pass error detection and correction framework
for Mandarin LVCSR. In INTERSPEECH.

-600-

