
Semantic Search Pipeline:
From Query Expansion to Concept Forging

Elizabeth Soper1,2, Jordan Hosier1,3, Dustin Bales1, and Vijay K. Gurbani1,4

1Vail Systems, Inc.
2Department of Linguistics, State University of New York at Buffalo

3Department of Linguistics, Northwestern University
4Department of Computer Science, Illinois Institute of Technology

Abstract—When searching a database for a topic (e.g. Covid-
19), there may not exist a precise match, especially if the
topic is novel. Furthermore, the topic may surface in the data
under different guises (‘Covid-19,’ ‘coronavirus,’ ‘pandemic’,
etc.). The results of a keyword search are limited by the querier’s
imagination and familiarity with the data. Such searches have
high precision, but low recall. In order to increase the recall
of searches, we present the Semantic Search Pipeline, a novel
approach to document retrieval that uses distributional semantic
models and locality sensitive hashing to expand queries and
efficiently identify other relevant documents that may not contain
the obvious query terms. We evaluate the pipeline using a dataset
curated from financial customer service call centers, resulting in
an increase in recall of 32% over a simple keyword baseline, with
a negligible drop in precision. Furthermore, we present the notion
of concept forging, a process of tracing a topic or concept through
time and through its various surface realizations. Applied to
Covid-19, the search pipeline retrieves a set of documents that
allow us to uncover the short- and long-term effects of Covid-19
on the lives of the people and businesses impacted by it. Although
Covid-19 is a timely test case, our search pipeline is general in
nature and can be easily applied to any range of topics.

I. INTRODUCTION

Despite impressive advances in search efficiency across
large datasets [1]–[5], document retrieval remains a challeng-
ing problem in natural language processing (NLP). Identifying
documents relevant to a query topic often requires deep
domain knowledge to craft appropriate queries, and even this
may not be enough to extract all relevant information. With a
simple keyword search, finding what you’re looking for can be
a challenge. Often a querier has a general idea of the topic they
are interested in, but may not know how this topic surfaces
in the data. The keywords that the querier comes up with
may leave out many relevant documents and consequently, the
search results may not be truly representative of the data. On
the other hand, more sophisticated search methods which use
state-of-the-art deep learning models may yield better results,
but are prohibitively costly in terms of time and computational
resources.

To retrieve a more comprehensive set of relevant results than
a simple keyword search, it is important to find a balance
between sophistication and efficiency. To this end, we em-
ploy distributional semantic models to access the underlying
meaning of keywords and of unstructured text documents. The

novelty of our method lies in using distributional semantic
models trained at two levels, word and document, while
minimizing computational cost with locality sensitive hashing,
to create a fuller picture of how the query topic shows up
across the entire dataset.

The pipeline described in this report was created for mining
a database of call transcripts from financial customer service
call centers. It contains approximately 100K call transcripts
per day over the course of many months, transcribed by an
automatic speech recognition system. The rest of the paper is
organized as follows: Section II summarizes relevant previous
work on query expansion and document retrieval, Section III
outlines the steps in the pipeline, in Section IV we evaluate
its performance on a test query, in Section V we discuss how
the results of the pipeline can be used for concept forging to
provide insight into the query topic, and finally we conclude
in Section VI.

II. RELATED WORK

Distributional semantics is based on the intuition that “you
shall know a word by the company it keeps” [6]; that is, the
meaning of a word can be learned from the contexts where
it occurs in language. Words are represented as vectors, and
words with similar meaning having correspondingly similar
vector representations. Distributional semantic models have
been successfully applied to a variety of NLP tasks, including
information retrieval; some previous work has used word-
level embeddings for query expansion [1]–[3], while Le and
Mikolov (2014) [7] create document-level embeddings to
model overall similarity between two documents.

Locality sensitive hashing (LSH) [8] is an efficient approx-
imation of nearest neighbor search. Hashing is a technique
that maps data to a fixed-size value, and is used to decrease
the time needed to retrieve individual records. Generally, the
goal of a hash function is to minimize the chance that two
unique data points will hash to the same value (or collide).
LSH differs from conventional hashing in that these collisions
are maximized instead of minimized; similar items are more
likely to hash into the same ‘bins’ than into different ones.
Since similar items end up in the same bins, locality sensitive
hashing can be used to approximate a nearest neighbor search
by checking only items in a single bin instead of every

2309

2021 IEEE 37th International Conference on Data Engineering (ICDE)

978-1-7281-9184-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00242

20
21

 IE
EE

 3
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
8-

1-
72

81
-9

18
4-

3/
20

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

13
99

.2
02

1.
00

24
2

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2022 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An overview of the Semantic Search Pipeline

document in the dataset. LSH has been used on non-linguistic
data [9] as well as linguistic data, especially for document
retrieval [4], [5].

In previous work using LSH on text data, documents were
represented with ngram ‘shingles’ or TF-IDF vectors, not
distributional semantic models [4], [5]. Our work builds on
this research by combining the advantages of distributional
semantics with the efficiency of LSH. Using distributional
models at both word and document level gives better results,
while maintaining a sublinear query runtime.

III. SEMANTIC SEARCH PIPELINE

The Semantic Search Pipeline is designed to take one or
more keywords as input and return a list of relevant documents
from the database as output. The pipeline has two major com-
ponents: query expansion (using word2vec) and near neighbor
search (using LSH). Fig. 1 illustrates the process.

A. Query Expansion with Word2vec

The first component of the Semantic Search Pipeline takes
the input query terms, retrieves an additional list of terms
based on a word2vec model, and returns the results of a key-
word search based on the expanded query. This is illustrated

in Fig. 1(a). Word2vec is a type of distributional semantic
model which uses a feedforward neural network to learn vector
representations of words based on a large text corpus. In a
trained model, words with similar meaning will have similar
vector representations [10]. Word vector models have been
used successfully in the past for query expansion; this step in
the Semantic Search Pipeline is very similar to the approaches
used in [1]–[3].

Based on a word2vec model, a similarity threshold t, a list
of query terms Q, and the model’s vocabulary V, the system
returns any item in V whose cosine similarity to one of the
query terms is at least t (Eq. 1 below).

∀q ∈ Q,∀v ∈ V, (v|cos(v, q) ≥ t) (1)

B. Near Neighbor Search with Locality Sensitive Hashing

Even with an expanded query, some relevant results are not
captured. Sometimes the reference is implicit. For example, in
the phrase ‘everything going on right now’ (from a transcript
in April 2020), it’s clear that the caller is referring to Covid-
19, even though there are no search terms in the phrase.
These references will be clear to a human reader, but difficult
to define in terms of keywords. To retrieve some of these
more elusive cases where the query topic is implicit in the
document, we again turn to vector representations. However,
we now use vector representation at the document level to find
other documents similar to those retrieved by the expanded
query. Following the same logic as the first component of
the pipeline, related documents will have similar vectors. Our
intuition is that finding the nearest neighbours of documents
we know are relevant can help identify additional documents
that are also relevant but do not contain any of the specified
keywords.

Because our dataset is large (approximately 54M docu-
ments), calculating the similarity between the query and every
document in the dataset is impractical as it will exhibit linear
complexity. While we can bound the time complexity by
performing similarity calculations in parallel on multiple cores
and machines, it is nonetheless of interest to seek approximate
solutions through randomized algorithms that exhibit sublinear
time. To do so, we opt for an efficient approximation of a full
nearest neighbor search by using LSH.

The second component of the pipeline is illustrated in
Fig. 1(b). In this component, each document in the dataset
is mapped to a binary vector of length 10. Formally, let
D = {D1, D2, ..., Dn}, where ~Di is a vector representation
of document i, and n is the total number of documents. We
seek to map ~Di to a binary vector of some fixed length, i.e.,

∀i ∈ {1..n} ~Di 7→ ~H (2)

Our locality sensitive hash, ~H, is a combination of 10 hash
functions, hi, i = {1..10}. ~H is defined in Eq. 3 as follows:

~H =
10⋃
i=1

hi (3)

2310

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2022 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

where each function, hi, corresponds to a random hyperplane
that helps bin vector ~Di. The hash function, hi, is defined as1:

hi(~Di) =

{
1 if ~Di falls below the hyperplane
0 if ~Di falls above the hyperplane

(4)

In this manner, each document in our dataset is mapped to
a binary vector of length 10 (Eq. 2). Consequently, documents
will hash into one of 210 possible bins (i.e., unique 10-digit
sequences of 1’s and 0’s). Because similar vectors are more
likely to have the same hash output, similar documents are,
therefore, more likely to land in the same bin.

Based on the keyword search from the first step, we create a
‘proto-document’ by averaging the vectors for each document
that contains at least one word v found by Eq. 1. Since all of
these documents are known to be relevant to the search topic,
averaging their vectors amplifies the patterns among them,
while cancelling out document-specific noise. The resulting
‘proto-document’ vector is therefore a better approximation
of the original query topic than any individual document
vector. This averaged vector is then hashed with same function
described above. All documents that hashed into same bin as
this averaged vector are considered candidates. Any of these
candidates which are similar enough to the averaged vector
(given a set threshold) are returned. Thus, we can approximate
an exhaustive neighbor search with fewer computations by
comparing only documents which ended up in the same bin
as our query, instead of the entire dataset.

IV. EVALUATION

A. Dataset

The following evaluation is based a subset of the entire
database, specifically the first 10K calls from March 27, 2020.
Each document was a call transcript from a financial customer
service call center. The data is multi-channel; each transcript
consists of both the customer’s and the employee’s speech.
This subset of 10K was small enough that the results could
be manually verified.

B. Query Expansion Component

Evaluation of the query expansion component of the
pipeline is based on word2vec models trained on 50K calls
from April 1, 2020, and a similarity threshold of 0.8. This
threshold was found to optimally balance the number of
keywords returned with the relevance of the keywords, based
on a grid search, where the search results were manually
verified. Using word2vec to expand our test query resulted
in a 30.4% increase in retrieved documents. The precision of
this method is presumed to be approximately 100%, based on
inspection of the expanded query terms.

Two word2vec models were trained and tested. The first
was a typical unigram model, where each word in the corpus
vocabulary has its own unique vector. The second model was

1Our hash was implemented using Python’s NearPy package: http://github.
com/pixelogik/NearPy

TABLE I
SELECTED QUERY TERMS FOR EACH EXPANSION METHOD

Method Keywords
Original Query coronavirus, corona, virus

Expanded Query (basic word2vec) kobe, krona, coronavirus,
shutdown, colvard, pandemic,
virus, outbreak, coronaviruses,

coveted, epidemic, corona,
koran, crisis, illness

Expanded Query (bigram word2vec) coronavirus, colvard,
coronaviruses, rotavirus,

epidemic, current situation,
shutdown, virus, colvard 19,

coveted 19, koven 19,
virus outbreak, crisis,
cauvin, October 19,

corona virus, corona,
cold virus, kobe 19,

pandemic, outbreak, cobra 19,
whole coronavirus, koran

TABLE II
EFFECT OF QUERY ON RECALL

Query Type Retrieved Documents
Original query 1309

Expanded (basic word2vec) 1659
Expanded (bigram word2vec) 1707

constructed by identifying meaningful bigrams to include in
the model’s vocabulary, in addition to the unigram vocabulary
of the first model. Meaningful bigrams were identified using
pointwise mutual information (PMI), a measure of association
between events. Formally, the PMI of two words x and y in
a corpus is defined as follows:

pmi(x; y) ≡ log
p(x, y)

p(x)p(y)
(5)

Pairs of words that occur together more than they occur with
other words have high PMI, while words that are more weakly
associated have low PMI. Based on this metric, bigrams with
a PMI ≥ 10 were selected and added to the existing unigram
vocabulary. During training, these bigrams were treated as
distinct vocabulary items and with unique vector representa-
tions. For example, ‘laid off’ has a vector that is distinct from
the vector for ‘laid’ and the vector for ‘off.’ Table I shows
the related terms identified by both the unigram and bigram
models. Using a basic unigram word2vec model to expand
query results in a 26.7% increase in retrieved documents
from the original query (‘coronavirus corona virus’). Adding
bigrams to the model results in an additional 3.7% increase
in retrieved documents, for a total 30.4% increase over the
original unexpanded query (Table II).

Using word2vec to find additional query terms was es-
pecially useful for this particular dataset, which consists of
call transcripts created through automatic speech recognition
(ASR). With word2vec we quickly identified many ways the
ASR system had mistranscribed Covid (a novel term which
was not in the training set of ASR engines, and consequently
never occurred in the transcribed data). The multitude of
ways in which an ASR engine could mistranscribe Covid

2311

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2022 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

TABLE III
EFFECT OF VECTOR FORMAT ON NEAR NEIGHBOR RESULTS

Vector Format Precision Novelty
TF-IDF 0.60 0.25
doc2vec 0.93 0.37

would be nearly impossible for a querier to guess without
extensive examination of the data, but were easily identified
using word2vec.

C. Near Neighbor Search Component

Evaluation of the pipeline’s second component is based on
two metrics: precision and novelty. Precision represents the
percent of the documents returned that were relevant to the
query. We define novelty as the percent of the documents
returned that were both relevant and had not been retrieved
previously by the keyword search. Because the query vector
is the average of the documents retrieved in the first step,
many of the nearest neighbors retrieved by LSH turn out to
be documents retrieved by the first step. The usefulness of
LSH is mainly in its finding new documents, so novelty is an
important measure. In the rest of this section, we report the
results of 1) testing different document vectorization methods
and 2) tuning the LSH distance parameter, then 3) describe an
optimization step in which we use random sampling to reduce
the cost of creating a ‘proto vector.’

1) Testing vector input formats: Two methods of vector-
izing documents were tested. The first was a TF-IDF model
[11]. In this representation, each dimension represents a word
in the vocabulary. The value of each dimension is determined
by the frequency of the word in the document (TF = term
frequency), compared with its frequency in the overall dataset
(IDF = inverse document frequency). If a word occurs many
times in a document but rarely occurs in other documents, it
is assumed to be important for classifying the document. The
TF-IDF model was trained on the entire 10K call test corpus,
excluding words that occurred less than 10 times or more than
500K times, resulting in a vocabulary of 6,472 words.

The second vector model tested was doc2vec [7]. This
model is comparable to word2vec, except vectors can represent
texts of variable length. Unlike the TF-IDF vectors, each
dimension’s meaning in doc2vec representations is opaque – it
represents some pattern discovered by the neural network dur-
ing training. The doc2vec vectors tested were 300 dimensions,
trained on 100k calls from April 15, 2020.

Table III shows the precision and novelty rates for both
formats, based on manually verifying the 30 nearest neighbors
returned for the ‘proto-document’ vector in each format.
Doc2vec representations performed the best, with 93% pre-
cision and a 37% novelty rate.

These are far from the only possible ways to represent
documents as vectors. For example, representations based on
transformer models, like BERT [12], have recently become the
state-of-the-art in deep NLP. While using a model like this as
input to our LSH function is possible in theory, in practice this
defeats our purpose for using LSH in the first place: reducing

Fig. 2. Effect of Distance Threshold on False Positive and Novelty Rate

computational cost. Encoding each document in a vector is the
bottleneck step in the pipeline; the time required to compute
one document vector was approximately 0.03s.2 Since the size
of BERT and similar deep learning models would increase the
time and resources needed to perform a search, our doc2vec
representations are a suitable compromise.

2) Testing distance threshold: The distance threshold pa-
rameter determines which, of all the candidate documents
identified by LSH, will be returned. Distance is measured as
the cosine between the ‘proto’ vector (created by averaging
the results of keyword search) and the candidate vector (i.e.
the document in the same hash bin being compared to the
‘proto’ vector). There is a trade-off between novel examples
and false positives; the higher the the threshold, the more likely
novel examples will be returned, but unrelated documents will
also be more likely. A grid search was done on a range of
thresholds to find the optimal value, which maximizes recall
and minimizes false positives. Fig. 2 shows the results of this
test. The optimal distance threshold was found to be between
0.30 and 0.35 (cosine distance).

The final version of our pipeline was able to successfully
identify many Covid-19-related documents which did not
contain any explicit reference to any of the expanded query
terms. Fig. 3 shows just a few examples of Covid-19 references
returned by the pipeline which would be nearly impossible to
find using just keywords. We can see that the pipeline was able
to identify documents which mention ‘the current conditions’
and ‘the current emergency situation’ as relevant to Covid-19.
Even more remarkable is the fourth example, where the caller
mentions they are a ‘hairstylist;’ the implication is that the
caller has been negatively affected by Covid-19, since the hair
salon industry was among those most affected by lockdowns
in 2020. The pipeline was able to pick up on this implication,
and identified the document as relevant.

Overall, the second component of our pipeline increased
recall by an additional 1.5% (a total increase of 31.9%
over the original keyword search). While fewer documents

2Time measurements based on an Intel(R) Xeon(R) CPU E5-2690 v3 @
2.60GHz with 40GB RAM.

2312

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2022 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Examples of implicit coronavirus references found by near neighbor
search (emphasis added)

Fig. 4. Mistranscriptions of ‘coronavirus’ or ‘Covid-19’

were retrieved by the near neighbor search component than
by query expansion, they add significant value in terms of
representativeness of the entire corpus.

V. CONCEPT FORGING: SEMANTIC SEARCH
AS A TOOL FOR DATA ANALYSIS

The results of the Semantic Search Pipeline facilitate new
insight into our data and allow us to explore new directions
in gathering insights about the query topic; the pipeline, in
essence, allows us to observe how a concept relates to other
concepts and how it evolves over time. This process, which we
call concept forging, happens at multiple stages in the search
process, based both on the distributional semantic models and
on the collection of documents retrieved by the pipeline.

Simply looking at the word2vec neighbors of the query
terms sheds some light on the query topic and its use in the
corpus. This query expansion component of the pipeline is
especially useful for ASR transcribed data, as it highlights
transcription errors. Fig. 4 gives a list of ways that ‘coron-
avirus’ or ‘Covid-19’ were mistranscribed, based on inspec-
tion of their 100 nearest neighbors in the trained word2vec
model. These mistranscriptions would be nearly impossible
to guess when crafting a keyword search by hand, but can be
quickly identified using a word2vec model trained on our data.
Looking at slightly more distant neighbors of the query terms
(generally between 0.6 and 0.8 cosine similarity) also points
to some related concepts (‘laid off’, ‘shut down’, ‘economy’),
giving a broader picture of how the concept of interest (Covid-
19) is connected to other concepts (e.g. employment).

Word2vec models are also a valuable source of insight into
how concepts change over time. Several recent studies [13]–
[16] have shown that training distributional models on different

Fig. 5. Changes in frequency over time for ‘employment’ and ‘pandemic’

time periods can illuminate trends in the data that help us
understand how a word or concept evolves. This is more
effective than looking only at changes in word frequency. For
example, while the word ‘pandemic’ increases dramatically in
frequency between January 2020 and April 2020, reflecting
the arrival of Covid-19 in the US, the word ‘employment’
does not (Fig. 5). Despite the fact that it does not change in
frequency, though, the contexts it is used in do change – it is
used more often in relation to the coronavirus pandemic. This
change in usage can be seen by looking at the word’s nearest
neighbors in the word2vec models pre-Covid and post-Covid;
Fig. 6 illustrates how the meaning of a word can shift over
time when it is used in different contexts. In January, before
the coronavirus had hit the US, ‘employment’ is relatively
far away from words like ‘virus,’ ‘outbreak,’ and ‘corona.’3

By April, however, all these words converge, reflecting the
change in relationship between these terms as the pandemic
caused many to lose their jobs. Thus we are able to identify
a change in the concept of ‘employment’ that is not evident
from frequency information alone.

Tredici et al. [17] suggest that in modeling short-term
meaning shift, it is difficult to distinguish contextual changes
caused by repeated reference to specific events from more
robust semantic change, as a shorter time period is more likely
to be influenced by individual events. We measured change
over an even shorter time than Tredici et al. [17], looking
at just a few months. We are not claiming, however, in our
analysis of the change in ‘employment,’ that the word has
fundamentally changed its meaning between January and April
2020. Rather, the shift in semantic space reflects its new (and
likely temporary) association with the Covid-19 pandemic,
which is still useful for our purpose of understanding how
the query topic relates to it.

This process of concept forging can be taken further through
analysis of the documents retrieved by the Semantic Search
Pipeline. By analyzing the terms in the retrieved documents
that have the highest TF-IDF scores, it is possible to identify
additional terms related to the search topic (terms perhaps not

3In fact, ‘corona’ gained an entirely new sense post-Covid, referring to the
novel coronavirus disease, where previously it had referred either to a circle
of diffracted light seen around the sun or moon, or to a beer company.

2313

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2022 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Semantic vector space, 50 dimensions transformed to 2 using t-SNE;
January 2020 (top) and April 2020 (bottom)

identified by the pipeline itself). These terms can be used as
input to the pipeline to expand the search further, creating a
sort of feedback loop to improve and expand a search until
the user is confident that the results are sufficiently exhaustive.
It is worth testing in future work the value of this type of
analysis. An even more promising source of potential insight is
using the documents retrieved by the pipeline as labeled data to
build a classifier for the search topic. This is especially helpful
for more complex topics, where keywords paint far from a
complete picture, allowing us to see what calls mentioning
Covid-19 tended to be about.

VI. CONCLUSION

A high-quality search improves the quality of any subse-
quent analysis based on its results. Expanding the query to
include more keywords is helpful up to a point, but certain
relevant documents will not contain any obvious keywords
to associate them with the search topic, and so may never
be found using keyword searches. Augmenting our pipeline
with a near neighbor search allows us to find documents based

on overall document similarity, while still keeping the search
process computationally inexpensive through LSH.

The Semantic Search Pipeline both increased recall by
31.9% for our dataset, and improved the representativeness
of the results, allowing us to get a deeper understanding
of the concept of ‘Covid-19’ as it relates to this data. The
pipeline allows our searches to react quickly to sudden changes
resulting from events like a pandemic, natural disaster, or
other major event. Future work includes scaling up to a larger
portion of the database, further formalizing the process of
concept forging, and application to other search topics like
intelligibility problems, where the concept is expressed in
multiple ways and is difficult to summarize in keywords.

REFERENCES

[1] S. Kuzi, A. Shtok, and O. Kurland, “Query expansion using word
embeddings,” International Conference on Information and Knowledge
Management, Proceedings, pp. 1929–1932, 2016.

[2] D. Roy, D. Paul, M. Mitra, and U. Garain, “Using Word Embeddings for
Automatic Query Expansion,” Neu-IR ’16 SIGIR Workshop on Neural
Information Retrieval, 2016.

[3] F. Diaz, B. Mitra, and N. Craswell, “Query Expansion with Locally-
Trained Word Embeddings,” Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, vol. 1 (Long Pa, pp.
367–377, 2016.

[4] F. Pan, “Document Retrieval in Big Data,” IMMM 2014, The Fourth
International Conference on Advances in Information Mining and Man-
agement, no. c, pp. 79–82, 2014.

[5] H. Li, W. Liu, and H. Ji, “Two-stage hashing for fast document retrieval,”
52nd Annual Meeting of the Association for Computational Linguistics,
ACL 2014 - Proceedings of the Conference, vol. 2, pp. 495–500, 2014.

[6] J. R. Firth, “A synopsis of linguistic theory 1930–1955,” in Studies in
linguistic analysis, 1957, pp. 1–32.

[7] Q. Le and T. Mikolov, “Distributed Representations of Sentences and
Documents,” Proceedings of the 31 st International Conference on
Machine Learning, Beijing, China, 2014.

[8] P. Indyk and R. Motwani, “Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality,” STOC, pp. 604–613, 1998.

[9] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for
scalable image search,” Proceedings of the IEEE International Confer-
ence on Computer Vision, no. Iccv, pp. 2130–2137, 2009.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 1st International Conference on
Learning Representations, ICLR 2013 - Workshop Track Proceedings,
pp. 1–12, 2013.

[11] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge
University Press, 2011.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” no.
Mlm, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805

[13] W. L. Hamilton, J. Leskovec, and D. Jurafsky, “Diachronic word embed-
dings reveal statistical laws of semantic change,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Berlin, Germany, Aug. 2016, pp. 1489–1501.

[14] G. Recchia, E. Jones, P. Nulty, J. Regan, and P. de Bolla, “Tracing shift-
ing conceptual vocabularies through time,” Lecture Notes in Computer
Science, vol. 10180 LNAI, pp. 19–28, 2017.

[15] A. Kutuzov, L. Øvrelid, T. Szymanski, and E. Velldal, “Diachronic word
embeddings and semantic shifts: a survey,” in Proceedings of the 27th
International Conference on Computational Linguistics, Aug. 2018, pp.
1384–1397.

[16] A. Rosenfeld and K. Erk, “Deep neural models of semantic shift,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), Jun. 2018, pp. 474–484.

[17] M. D. Tredici, R. Fernández, and G. Boleda, “Short-term meaning shift:
A distributional exploration,” NAACL HLT 2019 - 2019 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies - Proceedings of the Con-
ference, vol. 1, pp. 2069–2075, 2019.

2314

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on July 12,2022 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

		2021-06-19T11:30:33-0400
	Preflight Ticket Signature

